二次根式教案【精彩6篇】

二次根式教案 篇一

二次根式是中学数学中的一个重要知识点,也是进一步学习高级数学的基础。掌握二次根式的概念和运算方法,对于学生的数学学习和解题能力的提高具有重要意义。本教案将以概念的讲解、例题的解析和练习题的训练相结合的方式,帮助学生全面掌握二次根式的相关知识。

一、概念讲解

二次根式即平方根的一种形式,其形式为√a,其中a为非负实数。在二次根式中,我们将√a称为根号,a称为被开方数。当a为正整数时,二次根式可以精确求出;当a为非正整数时,二次根式无法精确求出,只能用近似值表示。

二、例题解析

1. 计算下列二次根式:

(1) √16

(2) √25

(3) √36

解析:根据二次根式的定义,我们可以很容易地计算出上述二次根式的值:

(1) √16=4

(2) √25=5

(3) √36=6

2. 化简下列二次根式:

(1) √8

(2) √27

(3) √50

解析:对于无法精确求出的二次根式,我们需要将其化简为最简形式。具体计算如下:

(1) √8=√(4×2)=2√2

(2) √27=√(9×3)=3√3

(3) √50=√(25×2)=5√2

三、练习题训练

1. 计算下列二次根式:

(1) √9

(2) √64

(3) √100

2. 化简下列二次根式:

(1) √18

(2) √32

(3) √72

通过以上概念讲解、例题解析和练习题训练,学生可以逐步掌握二次根式的相关知识和运算方法。在实际解题中,学生需要通过不断的练习和思考,提高自己的解题能力和灵活运用二次根式的能力。同时,老师应该根据学生的实际情况,及时纠正和指导,帮助学生克服困难,提高学习效果。相信通过本教案的学习,学生会对二次根式有一个更加深入的理解,为进一步学习高级数学打下坚实的基础。

二次根式教案 篇二

二次根式是中学数学中的一个重要内容,也是数学学习的基础。在学习二次根式的过程中,我们需要掌握二次根式的概念、运算方法和应用技巧。本教案将以示例分析、问题探究和综合训练为主线,帮助学生全面理解和掌握二次根式的相关知识。

一、示例分析

1. 计算下列二次根式:

(1) √9

(2) √16

(3) √25

解析:根据二次根式的定义,我们可以直接计算出上述二次根式的值:

(1) √9=3

(2) √16=4

(3) √25=5

2. 化简下列二次根式:

(1) √12

(2) √20

(3) √27

解析:对于无法精确求出的二次根式,我们需要将其化简为最简形式。具体计算如下:

(1) √12=√(4×3)=2√3

(2) √20=√(4×5)=2√5

(3) √27=√(9×3)=3√3

二、问题探究

1. √a×√b是否等于√(a×b)?

2. √(a+b)×√(a-b)是否等于√(a^2-b^2)?

解析:学生可以通过实际计算和化简,验证以上问题的正确性,并通过具体的例子加深理解。

三、综合训练

1. 计算下列二次根式:

(1) √36

(2) √49

(3) √64

2. 化简下列二次根式:

(1) √15

(2) √30

(3) √45

通过以上示例分析、问题探究和综合训练,学生可以对二次根式的相关概念、运算方法和应用技巧有一个全面的了解和掌握。在实际解题中,学生应该注重思考、灵活运用,提高解题能力和应用能力。同时,老师应该及时纠正和指导,帮助学生解决困难,提高学习效果。相信通过本教案的学习,学生会对二次根式有一个更加深入的理解,为数学学习的进一步发展打下坚实的基础。

二次根式教案 篇三

  一、内容和内容解析

  1.内容

  二次根式的性质。

  2.内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

  问题2 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  

问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得出代数式的概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

  五、目标检测设计

  1. ; ; .

  【设计意图】考查对二次根式性质的理解.

  2.下列运算正确的是( )

  A. B. C. D.

  【设计意图】考查学生运用二次根式的性质进行化简的能力.

  3.若 ,则 的取值范围是 .

  【设计意图】考查学生对一个数非负数的算术平方根的理解.

  4.计算: .

  【设计意图】考查二次根式性质的灵活运用.

二次根式教案 篇四

  教材分析:

  本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

  学生分析:

  本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

  设计理念:

  新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的.、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

  教学目标知识与技能目标:

  会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

  过程与方法目标:

  通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

  情感态度与价值观:

  通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.

  重点、难点:重点:

  合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

  难点:

  二次根式加减法的实际应用。

  关键问题 :

  了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

  教学方法:.

  1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

  2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

  3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

二次根式教案 篇五

  课题:二次根式

  教学目标 1、知识与技能

  理解a(a≥0)是一个非负数, (a≥0)

  2、过程与方法

  (1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

  方法

  (2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助

  交流合作,分析问题,总结反思

  3、情感、态度与价值观

  体验成功的乐趣,锻炼克服困难的意志,培养严谨

  求实的科学态度

  教学重难点 教学重点:二次根式的概念

  教学难点:二次根式中根号下必须为非负数

  教学过程

  一、课前回顾

  (2分钟)

  学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?

  二次根式中字母的取值范围:

  ①被开方数大于等于零;

  ②分母中有字母时,要保证分母不为零。

  ③多个条件组合时,应用不等式组求解

  一、情境引入(3分钟)

  由生活中的实例引入投影的概念,引起学生的学习兴趣

  已知下列各正方形的面积,求其边长。

  二、探究1(10分钟)

  练习1:

  计算下列各式:

  三、探究2(10分钟)

  可以发现它们有如下规律:

  一般的,二次根式有下列性质:

  练习2:

  典型例题 例1:计算:

  例2:计算:

  达标测试(5分钟)

  课堂测试,检验学习结果

  1、判断题

  2、若 ,则x的取值范围为 ( A )

  (A) x≤1 (B) x≥1

  (C) 0≤x≤1 (D)一切有理数

  3、计算

  4、化简

  5、已知a,b,c为△ABC的三边长,化简:

  这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

  应用提高(5分钟)

  能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。

  (1)用二次根式表示点P到原点O的距离;

  (2)如果 求点P到原点O的距离

  体验收获 今天我们学习了哪些知识

  二次根式的两条性质。

  布置作业 教材8页习题第3、4题。

二次根式教案 篇六

  一、教学目标

  1。使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

  2。使学生掌握化简一个二次根式成最简二次根式的方法。

  3。使学生了解把二次根式化简成最简二次根式在实际问题中的应用。

  二、教学重点和难点

  1。重点:能够把所给的二次根式,化成最简二次根式。

  2。难点:正确运用化一个二次根式成为最简二次根式的方法。

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。

  四、教学手段

  利用投影仪。

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0。5m2,那么它的边长是多少?能不能求出它的近似值?

  了。这样会给解决实际问题带来方便。

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。

  总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:

  1。被开方数的因数是整数,因式是整式。

  2。被开方数中不含能开得尽方的因数或因式。

  例1 指出下列根式中的最简二次根式,并说明为什么。

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。

  例2 把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。

  例3 把下列各式化简成最简二次根式:

  说明:

  1。引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。

  2。要提问学生

  问题,通过这个小题使学生明确如何使用化简中的条件。

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式。

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。

  (三)小结

  1。满足什么条件的根式是最简二次根式。

  2。把一个二次根式化成最简二次根式的主要方法。

  (四)练习

  1。指出下列各式中的最简二次根式:

  2。把下列各式化成最简二次根式:

  六、作业

  教材P。187习题11。4;A组1;B组1。

  七、板书设计

相关文章

数学六年级上册教案【优质6篇】

作为一位杰出的老师,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?以下是小编整理的数学六年级上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。数学...
教案大全2013-01-08
数学六年级上册教案【优质6篇】

小学二年级语文《蓝色的树叶》原文、教案及教学反思(经典3篇)

小学二年级语文《蓝色的树叶》原文、教案及教学反思 【#二年级# 导语】《蓝色的树叶》这篇课文写得是在一次美术课上,李丽的绿铅笔不见了,就向同桌林园园借,可是林园园舍不得借给她用,李丽就用自己的蓝铅笔画...
教案大全2017-02-02
小学二年级语文《蓝色的树叶》原文、教案及教学反思(经典3篇)

音乐教学教案(优选6篇)

作为一名老师,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。教案要怎么写呢?以下是小编为大家整理的音乐教学教案,欢迎大家借鉴与参考,希望对大家有所帮助。  音乐教学教案 篇1  ...
教案大全2017-08-07
音乐教学教案(优选6篇)

《降落伞》教案【通用6篇】

作为一位杰出的老师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?以下是小编为大家整理的《降落伞》教案,欢迎阅读与收藏。《降落伞》教案1活动设计背景我们班里男生居...
教案大全2019-03-09
《降落伞》教案【通用6篇】

地方课程教案【优选3篇】

一、教学目标: 1、诵读课文,掌握关键词句,理解文章内容。 2、精读课文,体会作者情感,把握文章主旨。 3、研读课文,赏析精彩妙点,积累名言警句。 4、熟读文章成诵,聆听先哲教导,汲取精神养料。 二、...
教案大全2012-08-06
地方课程教案【优选3篇】

高一地理自然界的水循环教案【精简3篇】

高一地理自然界的水循环教案 以下是?为大家整理的《高一地理自然界的水循环教案》,希望能为大家的学习带来帮助,不断进步,取得优异的成绩。 第一节:自然界的水循环【教学目的】 一、知识目标 1.使学生了...
教案大全2016-09-07
高一地理自然界的水循环教案【精简3篇】