组合图形的面积教案(精彩6篇)
组合图形的面积教案 篇一
组合图形的面积教案
引言:
组合图形是由两个或多个基本图形组合而成的图形。计算组合图形的面积需要将基本图形的面积进行分解和计算。本教案将介绍如何计算组合图形的面积,并提供一些实际问题的练习。
一、学习目标:
1. 了解组合图形的定义和特点;
2. 掌握计算组合图形的面积的方法;
3. 能够应用所学知识解决实际问题。
二、教学内容:
1. 组合图形的定义和特点;
2. 计算组合图形的面积的方法;
3. 实际问题练习。
三、教学过程:
1. 引入组合图形的概念,让学生理解组合图形由基本图形组合而成;
2. 介绍计算组合图形面积的方法,如将组合图形分解为基本图形,计算各个基本图形的面积,然后相加;
3. 结合实际例子,引导学生进行计算组合图形的面积的练习;
4. 提供一些实际问题,让学生应用所学知识解决实际问题。
四、教学要点:
1. 组合图形的定义和特点;
2. 计算组合图形面积的方法;
3. 实际问题的应用。
五、教学资源:
1. 教材:包含组合图形的面积计算方法的教材;
2. 实物:展示不同组合图形的实物。
六、教学评估:
1. 课堂练习:组合图形的面积计算练习;
2. 实际问题解决:学生能否应用所学知识解决实际问题。
组合图形的面积教案 篇二
组合图形的面积教案
引言:
组合图形是由两个或多个基本图形组合而成的图形。计算组合图形的面积需要将基本图形的面积进行分解和计算。本教案将介绍如何计算组合图形的面积,并提供一些实际问题的练习。
一、学习目标:
1. 了解组合图形的定义和特点;
2. 掌握计算组合图形的面积的方法;
3. 能够应用所学知识解决实际问题。
二、教学内容:
1. 组合图形的定义和特点;
2. 计算组合图形的面积的方法;
3. 实际问题练习。
三、教学过程:
1. 引入组合图形的概念,让学生理解组合图形由基本图形组合而成;
2. 介绍计算组合图形面积的方法,如将组合图形分解为基本图形,计算各个基本图形的面积,然后相加;
3. 结合实际例子,引导学生进行计算组合图形的面积的练习;
4. 提供一些实际问题,让学生应用所学知识解决实际问题。
四、教学要点:
1. 组合图形的定义和特点;
2. 计算组合图形面积的方法;
3. 实际问题的应用。
五、教学资源:
1. 教材:包含组合图形的面积计算方法的教材;
2. 实物:展示不同组合图形的实物。
六、教学评估:
1. 课堂练习:组合图形的面积计算练习;
2. 实际问题解决:学生能否应用所学知识解决实际问题。
组合图形的面积教案 篇三
教学目标:
⑴使同学认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。
⑵通过操作、探索、发现、交流等活动,初步培养同学合作意识和创新意识,进一步发展同学的空间观念和交流能力。
⑶通过学习,提高同学对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,感受数学的魅力。
教学流程:
一、说圆环。
⑴剪圆环活动。
出示一个同心圆环;
让同学用一张白纸剪出同样的一个圆环。
⑵说剪圆环的过程。
让同学介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减小圆面积。
二、算圆环。
1、教学例10
出示例10和图。
师问:从题中你获得哪些信息?要计算它的面积,你有什么好的方法?在小组中说说你的想法。
同学汇报和交流方法。
同学自主尝试练习。
交流解答过程。
同学交流(同学作品放在视频投影仪上向全班介绍):圆环面积的计算方法,大圆面积-小圆面积;圆环面积的计算步骤,可先算大圆面积,再算小圆面积,最后用减法算圆环面积;全班介绍,教师板书解答的全过程。
2、教学“试一试”
出示题目和图形,理解题意。
同学独立计算。
交流解题方法,注意提醒同学半圆的面积必需把整圆的面积除以2。
3、教学“练一练”
考虑:
(1)求涂色局部的面积,需要计算哪些基本图形的面积?
(2)计算这些基本图形的面积分别需要哪些条件?
(3)第一个图形,两个基本图形有什么练习?第二个图形呢?
(4)同学独立完成,并全班交流。 反馈时,注意加法求组合图形面积和减法求组合图形的不同。
三、巩固练习。
1、完成练习十九第6题。
先说说每个组合需要丈量途中哪些线段的长度?再让同学独立完成。
完成后展示同学作业 ,并交流方法。
2、完成练习十九第7题。
同学根据图形作出直观的判断,并说说直观判断的方法。
师追问:你是怎样想到的?
同学通过计算检验所作出的判读。
3、完成练习十九第8题。
(1)观察图,理解题意。
(2)指导分析。
4、完成练习十九第9题。
师问:你能估计出每种花卉分别所占图形面积的几分之几吗?指导用画出辅导线的方法,来估计每种花卉所占圆形面积的几分之几。
同学独立计算每种花卉的种植面积。
完成后交方法。
四、阅读“你知道吗?,并算一算。
五、课堂总结
师:通过今天的学习,你有什么收获?说说缓刑的面积可以怎样求?在计算组合图形的面积时需要注意什么?
六、作业
练习十九第6题、第8题.
组合图形的面积教案 篇四
教材分析:
《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。
教学目标:
知识目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中有关组合图形的实际问题。
过程和方法
让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
情感、态度与价值观
1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
2、渗透转化的数学思想和方法。
教学重点:
学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
教学难点:
理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。
教学准备:
多媒体课件和组合图形图片。
教学过程:
一、激趣导入、复习铺垫、认识组合图形
1、介绍笑笑和她家的新房子
师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)
2、引导学生观察,复习有关平面图形面积的计算公式
师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?
3、欣赏图片(课件出示一组图片)
师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)
4、教师总结,揭示课题并板书
师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)
二、创设情境、探究新知
笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)
1、估计地板的面积
请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)
2、采用不同的方法求客厅的面积。
同学们估的数据都不大一样,谁估得最接近呢?下面我们
就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。
(1)生动手画图
(2)汇报交流:同学们做好了吗?现在谁来说说你的想法?
3、师生归纳方法并比较
(1)观察找特点
根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)
(2)引导比较,对方法进行分类,找出最简单的方法
师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)
(3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)
(4)学生独立计算,四人板演。
(5)汇报交流,集体订正。
(6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)
4、归纳算法
刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。
师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三、实际应用、解决问题
1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)
(1)学生拿出先准备好的图形,动手画
(2)展示交流
2、计算墙壁的面积
观察图形选择方法独立计算汇报交流
同学们帮笑笑解决了难题,相信她会很感激大家的,咱们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?](1)需要粉刷的面积一共是多少平方米?(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?
观察图形选择方法独立计算汇报交流
3、求门油漆的面积。
师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?
四、归纳小结、提升知识
这节课你学会了什么?
(师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)
五、拓展延伸
师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。
1.6m 4 m 10
板书设计:
组合图形面积
S=ab 分割
S=aa S=ah 转化
基本图形
S=ah2 S=(a+b)2 添补
组合图形的面积教案 篇五
“创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。”培养学生的创新能力是素质教育的重要目标,也是新课程改革的核心问题之一。我们在教学中,要为学生提供充分的时间和空间,鼓励学生用多种方法、多种思路解决数学问题,促进学生创新能力的提高。
案例:求组合图形的面积
导入新课后,老师出示例题:
求下面组合图形的面积?(单位:厘米)
师:分四人小组互相讨论,再派代表发言。(学生大约讨论六分钟左右进行反馈)
师:大家来汇报一下,你是怎样算的?
生1:我是把它分成一个长方形和一个梯形来算的。先算出长方形的面积是48平方厘米,梯形的面积是40平方厘米,再把它们加起来,结果是88平方厘米。
评:这位同学的回答思路清楚、语言精炼,同时也很清楚地把他的分析过程“怎样分”展示出来,使学生一看便一目了然。
生2:我是把它分成一个梯形和一个三角形来算的。梯形的面积是(6+10)×8÷2=64(平方厘米),三角形的面积是12×(10-6)÷2=24(平方厘米),再把两个面积加起来也是88平方厘米。
评:这位同学的回答相当不错,思路也很清楚,经他这样把原来的一个图形分成两个我们熟悉的图形的这种计算方法,使学生看了后也能掌握。
生3:我 先算长方形的面积是80平方厘米,三角形的面积是8平方厘米,再把两个面积加起来也是88平方厘米。
评:这位同学又有了新的计算方法,思路也很清楚,也是一种最佳的计算方法,分成的方法一看就能掌握。
生4:可以补上一个梯形,使它成为一个长方形,再用长方形的面积减去梯形的面积就可以了。如图:
生5:还可以把它分成一个长方形和两个三角形来计算。先算出长方形的面积是48平方厘米,再算出两个三角形的面积分别是16平方厘米和24平方厘米,最后把这三个面积加起来是88平方厘米。
这一例题的教学就这样在“创新”中开始,又在“创新”中结束了,从整个过程来看,一开始课堂上可以明显地观察到不少学生一脸疑惑,渐渐地注意力出现涣散,到最后一种方法也不会的学生估计不存在,如有也是个别的。课堂教学面对的是一个班级的学生,他们的知识、智力水平存在差异。在初次接触组合图形,没有进行引导的情况下,让学生自行探究,获得成功的只是部分同学。在汇报解法时,要让学生充分展示解题思路、探究历程,引导全班同学进行分析、认同,进一步明确思路。有了多种方法,还应通过比较,懂得各种方法的繁简优劣。
随着新课程改革的不断推向高潮,对如何实施新理念,弥补传统数学的缺陷,解决传统数学教学问题,发扬传统数学教学的优点需要我们不断地去探索、去实践。“陷于生活、方向不明、放任自流”绝不应该成为新课程理念的本意,“联系实际、明确目标、自主探究、体验成功”菜是我们要追求的目标。
组合图形的面积教案 篇六
教学目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
教学重难点
教学重点:探索组合图形面积的计算方法。
教学难点:根据组合图形的条件,有效地选择计算方法。
教学过程
一、复习:课件出示:
师:下面这些物体里有哪些图形?
说一说生活中哪些地方有组合图形。生畅所欲言。
师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?
师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。
二引入新课。
1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?
师:这个问题,能用你学过的知识想办法解决吗?
小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。
布置自主探索任务:
明确探索的要求;(把想法画在图上,并试着求出地板的面积)
交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。
提示:实在有困难的同学,可以与同桌进行合作。
2、生独立尝试,师巡视,并发现典型。
3、反馈:
师:谁来展示你的解决办法?
(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)
补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。
可能出现的答案有:
将你的想法画在图形上,并试着求出图形的面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。
出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。
4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。
师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)
今天,我们学的是组合图形的面积。(板书:的面积)。
师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?
(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)
师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。
三、练习。
过渡:所以,我们在解决这类问题时,可以考虑要尽量的(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有
可能出现的其它问题有:请你来评价一下这两种方法。
(分成了不是已学过的图形)
(分得过细,数量上过多)
将下面图形分成我们已学过的图形
过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
做一面中队旗用多少布?
在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
有一块正方形空心地砖,它实际占地面积是多少?
学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?
请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。
师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。
四:总结。
1、学习了这一课,你学会了什么?
2、最后,我们来轻松一下。