同底数幂的乘法教案(精选3篇)

同底数幂的乘法教案 篇一

引言:

同底数幂的乘法是数学中的一个重要概念,它在代数运算中有着广泛的应用。本教案将介绍如何进行同底数幂的乘法运算,以及相关的规则和性质。

一、同底数幂的定义与性质:

同底数幂指的是具有相同底数的乘方运算。例如,对于底数为a的两个幂 a^m 和 a^n,它们的乘积可以表示为 a^m * a^n = a^(m+n)。这个公式表明,在进行同底数幂的乘法运算时,只需要将指数相加即可得到结果。

二、同底数幂的乘法运算步骤:

1. 确定底数:同底数幂的乘法运算要求底数相同,因此首先需要确定底数。

2. 确定指数:确定每个同底数幂的指数。

3. 进行指数相加:将每个同底数幂的指数相加,得到最终的指数。

4. 计算结果:将底数和指数代入乘方运算公式中,得到最终结果。

三、同底数幂的乘法实例:

例如,计算 2^3 * 2^4:

1. 底数为2,指数分别为3和4。

2. 将指数相加得到 3+4=7。

3. 将底数2和指数7代入乘方运算公式,得到 2^3 * 2^4 = 2^7。

4. 计算得到结果为 2^7 = 128。

四、同底数幂的乘法规则:

1. 同底数幂的乘法运算可以简化为指数相加的运算。

2. 对于同底数幂的乘法,可以改变乘法的顺序,即 a^m * a^n = a^n * a^m。

3. 同底数幂的乘法运算可以进行合并,即 a^m * a^m = a^(m+n)。

五、练习题:

1. 计算 3^2 * 3^5 的结果。

2. 简化表达式:5^3 * 5^2 * 5^4。

六、总结:

同底数幂的乘法是指具有相同底数的乘方运算。它可以通过将指数相加来进行运算,而无需对底数进行改变。同底数幂的乘法运算遵循指数相加、顺序可变和合并的规则。通过练习题的实践,可以更好地掌握同底数幂的乘法运算。

同底数幂的乘法教案 篇二

引言:

在数学中,同底数幂的乘法是一个重要的概念,它可以在代数运算中起到简化和加速计算的作用。本教案将通过实例和练习题,帮助学生掌握同底数幂的乘法运算规则和技巧。

一、基本概念:

同底数幂是指具有相同底数的乘方运算。例如,对于底数为a的两个幂 a^m 和 a^n,它们的乘积可以表示为 a^m * a^n = a^(m+n)。同底数幂的乘法运算可以通过将指数相加来简化计算过程。

二、同底数幂的乘法运算规则:

1. 规则一:同底数幂的乘法运算可以进行指数相加,即 a^m * a^n = a^(m+n)。

2. 规则二:同底数幂的乘法运算可以改变乘法的顺序,即 a^m * a^n = a^n * a^m。

3. 规则三:同底数幂的乘法运算可以进行合并,即 a^m * a^m = a^(m+n)。

三、实例演练:

1. 计算 2^3 * 2^4 的结果:

- 底数为2,指数分别为3和4。

- 将指数相加得到 3+4=7。

- 将底数2和指数7代入乘方运算公式,得到 2^3 * 2^4 = 2^7。

- 计算得到结果为 2^7 = 128。

2. 简化表达式 5^3 * 5^2 * 5^4:

- 底数为5,指数分别为3、2和4。

- 将指数相加得到 3+2+4=9。

- 将底数5和指数9代入乘方运算公式,得到 5^3 * 5^2 * 5^4 = 5^9。

四、练习题:

1. 计算 3^2 * 3^5 的结果。

2. 简化表达式:4^3 * 4^4 * 4^2。

五、总结:

同底数幂的乘法运算是一种重要的代数运算,它可以通过将指数相加来简化计算过程。同底数幂的乘法运算遵循指数相加、顺序可变和合并的规则。通过实例演练和练习题的训练,学生可以更好地掌握同底数幂的乘法运算规则和技巧。

同底数幂的乘法教案 篇三

  学习目标:

  (1)经历探索同底数幂的乘法运算性质的过程,进一步体会幂的'意义;

  (2)了解同底数幂乘法的运算性质,并能解决一些实际问题。

  (3)在进一步体会幂的意义时,学习同底幂乘法的运算性质,提高解决问题的能力。

  学习重点:同底数幂的乘法运算法则。

  学习难点:同底数幂的乘法运算法则的灵活运用。

  一、课前延伸

  1、式子103,a5各表示什么意思?

  2、指出下列各式子的底数和指数,并计算其结果。

  ?) -52 32 (-3)2 -34 ( ) ( 341212

  3、化简下列各式:

  (1)3a3+ 2a3

  (2)3a3- 3a2- a3

  【课内探究】

  二、创设情境,感受新知

  问题:一种电子计算机每秒可进行103次运算,它工作 103 秒可进行

  多少次运算?

  1、探究算法

  103×103=(10×10×10)×(10×10×10)( )

=10×10×10×10×10×10 ( )

  =106 ( )

  2、合作学习,寻找规律

  ① 53×52② 108×103 ③ 97×910 9m×9n ⑤a5×a63、定义法则

  ①、你能根据规律猜出答案吗?

  猜想:am·an=? (m、n都是正整数)

  ②口说无凭,写出计算过程,证明你的猜想是正确的 am·an=

  思考

  (1)等号左边是什么运算?

  (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?

  (4)公式中的底数a可以表示什么?

  (5)当三个以上同底数幂相乘时,上述法则成立吗?

  三、应用新知,体验成功

  例1、计算下列各式,结果用幂的形式表示:

  (1)x2·x5 (2)(a+b)·(a+b)6

  (3)2×24×23 (4)xm·x3m+1

  【小试牛刀】1、口答题:

  ① 78×73 ②x3〃x5

  ③(a-b)2〃(a-b) ④a · a3 · a5 · a6

  2、下面的计算对不对?如果不对,怎样改正?

  (1)b5·b5= 2b5 ( ) (2)b5 + b5 = b10 ( )

  (3)x5·x5 = x25 ( ) (4)y5· y5 = 2y10 ( )

  (5)c·c3 =c3 ( ) (6)m + m3 =m4 ( )

  四、拓展训练,激发情智

  例2计算下列各式,结果用幂的形式表示:

  ①(-3)2×(-3)3 ②34×(-3)3

  ③(m-n)3 〃(n-m)2 ④3×33×81

  【更上一层】1、填空。

  (1)x5 ·( )= x 8

  (2)xm ·( )=x3m

  (3)如果an-2an+1=a11,则n=

  2、已知:am=2, an=3.求am+n =?.

  例3光的速度为3×105千米/秒,太阳光照射到地球上约需5×102秒,问:地球离太阳多远?

  【检验自我】课本117页练习1、2题

  五、归纳小结

  【温馨提示】几个须注意的地方:

  (1)在计算时不能直接写出结果

  (2)不能把同底数幂相乘的运算法则和其它法则混淆。

  (3)进一步了解从特殊到一般和从一般到特殊的重要思想。

  【课后提升】

  配套练习册《同底数幂的乘法与除法》第一课时

相关文章

小学生行为习惯教育教案【优质6篇】

作为一名教职工,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的小学生行为习惯教育教案,仅供参考,欢迎大家阅读。  小...
教案大全2018-09-01
小学生行为习惯教育教案【优质6篇】

《打花巴掌》教案及教学反思(经典4篇)

作为一名人民老师,我们要在课堂教学中快速成长,通过教学反思可以很好地改正讲课缺点,那么大家知道正规的教学反思怎么写吗?以下是小编帮大家整理的《打花巴掌》教案及教学反思,欢迎大家分享。  《打花巴掌》教...
教案大全2019-03-02
《打花巴掌》教案及教学反思(经典4篇)

幼儿园开学初教案(通用5篇)

幼儿园开学初教案 幼儿园开学初教案【1】 一、教育教学目标 1、巩固幼儿已有的一日生活常规和各种生活习惯。 2、引导幼儿实现以家庭生活为主到以幼儿园生活为主的转变,将安全教育渗透到各个活动环节中。 3...
教案大全2017-09-04
幼儿园开学初教案(通用5篇)

小班教案《认识三角形》【最新6篇】

作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那要怎么写好教案呢?下面是小编为大家整理的小班教案《认识三角形》,欢迎阅读与收藏。小班教...
教案大全2013-06-02
小班教案《认识三角形》【最新6篇】

《天窗》教案【通用6篇】

作为一名老师,通常需要准备好一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那要怎么写好教案呢?下面是小编为大家收集的《天窗》教案,欢迎阅读与收藏。《天窗》教案1教学目标1.认识...
教案大全2017-04-06
《天窗》教案【通用6篇】

奇妙的克隆教案【优选6篇】

奇妙的克隆教案(一): 教学目标: 1、能正确、流利地朗读课文。 2、学会本课生字,能够认读绿线格内的生字,理解由生字组成的词语。 3、了解克隆技术的发展、成就和好处,培养学生勤于思考、热爱科学的精神...
教案大全2016-08-04
奇妙的克隆教案【优选6篇】