鸡兔同笼教案(推荐6篇)

鸡兔同笼教案 篇一

鸡兔同笼是一种经典的数学问题,通过这个问题可以帮助学生理解和掌握代数方程的解题方法。本教案将以鸡兔同笼问题为背景,设计一节有趣而富有挑战性的数学课。

教学目标:

1. 学生能够理解鸡兔同笼问题的背景和要求;

2. 学生能够掌握代数方程的解题方法;

3. 学生能够运用所学知识解决实际问题。

教学准备:

1. 将鸡兔同笼问题以图表的形式呈现在黑板上;

2. 准备足够的小球,代表鸡和兔的数量;

3. 准备白纸和铅笔。

教学过程:

1. 导入:通过提问的方式引导学生思考,如果有10只鸡和兔子共20只脚,那么鸡和兔子各有多少只?

2. 引导学生分析问题:鸡和兔子的数量都是整数,而且鸡和兔子的脚的总数等于20只,可以列出方程式。

3. 解决方程式:通过让学生进行讨论和思考,引导他们找到解决方程的方法。可以提供一些提示,如“鸡和兔子的脚的总数等于20只,而且鸡和兔子的数量都是整数”。

4. 验证答案:通过实际操作,让学生使用小球代表鸡和兔子的数量,验证他们的答案是否正确。

5. 进一步探究:引导学生思考鸡兔同笼问题的扩展,如如果有30只脚,那么鸡和兔子各有多少只?通过类似的解题过程,帮助学生解决这个问题。

6. 拓展应用:让学生运用所学知识解决其他实际问题,如如果有n只脚,那么鸡和兔子各有多少只?

教学扩展:

1. 鼓励学生提出更多的问题,并尝试使用代数方程的解题方法解决;

2. 引导学生思考鸡兔同笼问题的实际应用,如在农场中统计鸡和兔子的数量。

在这节课中,学生将通过解决鸡兔同笼问题,掌握代数方程的解题方法。通过实际操作和思考,他们将深入理解数学问题的解决过程,并能够将所学知识应用于实际生活中。这将培养学生的逻辑思维能力和解决问题的能力,提高他们对数学的兴趣和学习动力。

鸡兔同笼教案 篇二

鸡兔同笼是一道经典的数学问题,通过这个问题可以培养学生的逻辑思维能力和解决问题的能力。本教案将以鸡兔同笼问题为背景,设计一节富有趣味性和挑战性的数学课。

教学目标:

1. 学生能够理解鸡兔同笼问题的背景和要求;

2. 学生能够运用代数方程的解题方法解决鸡兔同笼问题;

3. 学生能够将所学知识应用于实际生活中。

教学准备:

1. 准备足够的小球,代表鸡和兔的数量;

2. 准备黑板和彩色粉笔。

教学过程:

1. 导入:通过提问的方式引导学生思考,如果有10只鸡和兔子共20只脚,那么鸡和兔子各有多少只?

2. 引导学生分析问题:通过让学生进行讨论和思考,引导他们找到解决鸡兔同笼问题的方法。可以提供一些提示,如“鸡和兔子的脚的总数等于20只,而且鸡和兔子的数量都是整数”。

3. 解决方程式:通过实际操作,让学生使用小球代表鸡和兔子的数量,找到满足鸡兔同笼问题的解。同时,引导学生将解决方程的过程记录在黑板上。

4. 验证答案:通过让学生验证他们的答案是否正确,进一步巩固他们的解题能力。

5. 拓展应用:引导学生思考鸡兔同笼问题的扩展,如如果有30只脚,那么鸡和兔子各有多少只?通过类似的解题过程,帮助学生解决这个问题。

6. 总结归纳:引导学生总结鸡兔同笼问题的解题方法和规律,并将其应用于其他实际问题的解决中。

教学扩展:

1. 鼓励学生提出更多的问题,并尝试使用代数方程的解题方法解决;

2. 引导学生思考鸡兔同笼问题的实际应用,如在农场中统计鸡和兔子的数量。

通过这节课的学习,学生将掌握代数方程的解题方法,培养逻辑思维能力和解决问题的能力。同时,他们将学会将所学知识应用于实际生活中,提高数学的实际运用能力和解决实际问题的能力。这将激发学生对数学的兴趣和学习动力,提升他们的学习效果和学习成绩。

鸡兔同笼教案 篇三

  教学目标:

  1、知识与技能

  初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。

  2、过程与方法

  通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。

  3、情感、态度与价值观

  培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

  教学重点:

  用画图法和列表法解决相关的实际问题。

  教学难点:

  体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

  教学准备:

  课件

  教学流程:

  (一)问题引入,揭示课题

  师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

  问:这段话是什么意思?谁能说说?(生试说)

  师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头。从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)

  (二)主动探究、合作交流、学习新知

  师:说明为了研究方便,我们先将题目的条件做一个简化。

  (课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?

  师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

  学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。

  师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

  学生思考、分析、探索,接下来小组讨论、交流。

  小组活动充分后进入小组汇报、集体交流阶段。

  师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

  学生汇报探究的方法和结论:

  1、画图法:

  给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。

  总结:画图的方法非常便于观察、非常容易理解。

  2、列表法:(展示学生所列表格)

  学生说明列表的方法及步骤:

  学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

  师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?

  3、假设法:(随学生能否出现此种情况作为机动出示)

  教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:

  板书:方法一:假设8只都是鸡,那么兔有:

  (26-8×2)÷(4-2)=5(只)

  鸡有8-5=3(只)

  同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:

  板书:方法二:假设8只都是兔,那么鸡有:

  (4×8-26)÷(4-2)=3(只)

  兔有8-3=5(只)

  小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。

  现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。

  (三)解决实际问题、课堂延伸

  1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

  看看我国古人是怎么解这个题的。

  2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?

  (四)课堂小结

  通过今天的学习,你有哪些收获?

  师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。

鸡兔同笼教案 篇四

  教材分析:

  “鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于五年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

  教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

  3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。

  教学重点:

  1、理解掌握解决问题的不同思路和方法。

  2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

  教学难点:

  理解掌握假设法,能运用假设法解决数学问题。

  教学具准备:

  表格

  教学过程:

  一、导入

  师生谈话导入新知

  (设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)

  二、探究新知

  1、质疑:提问:

  (1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?

  (2)鸡和兔相比:什么比什么多?多多少?

  (3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?

  (4)尝试解决,交流想法;

  (5)出示交换已知条件以后的题目。

  (设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)

  2、教学例1

  (1)出示例题1。

  师:请同学们读一读,和前面的题目一样吗?什么地方不一样?

  请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)

  (设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)

  (2)学生自由猜测。

  师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。

  (3)验证猜想。

  (4)观察发现规律。

  (5)总结概括:在数学中这种方法叫列表法。(板书)。

  (设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)

  质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?

  3、探讨假设法:

  a、假设全是兔。

  1师以童话故事的形式引入全是兔的情境。

  2集体探究,引导交流。

  b、假设全是鸡。

  1师再次继续童话故事引入全是鸡的情境。

  2小组独立探究交流假设全是鸡的计算方法。

  3指名小组展示并叙述计算过程。

  4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

  5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。

  (设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)

  三、练习巩固

  出示练习题。

  四、课后总结

鸡兔同笼教案 篇五

  教学目标:

  1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

  2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

  3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

  教学重点:

  能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

  教学难点:

  能用不同的策略解决相关的实际问题。

  教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。

  教具:多媒体课件

  教学过程:

  一、联系现实,激趣导入

  1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

  生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

  师:接下来的歌谣不完整,谁能把它填完整呢?

  两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…

  师:你是怎么知道的?

  生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

  [设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

  2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。

  二、自主探索,尝试解决

  1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

  (1)、指名读题

  (2)、理解题意:

  师:20个头表示什么?

  生:20个头表示鸡与兔的总头数。

  师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

  (3)、同桌说一说:

  (4)、学生汇报,教师填表

  生1:我猜鸡有3只,兔子有17只。

  生2:我猜鸡有5只,兔子有15只。

  生3:我猜鸡有16只,兔子有4只。

  ……

  师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

  生:鸡兔的总只数没有变。

  强调鸡兔的总只数不变

  [设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

  2、自主探究

  出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

  (1)、指名读题

  (2)、引导观察:

  师:这两道题有什么不同呢?

  生:第2个问题多了一个条件“54条腿”

  (3)、理解题意:

  师:20个头,54条腿是什么意思呢?

  生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

  师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

  ①、每个小组老师都有一份材料

  ②、小组长组织小组成员讨论,小组长并做好记录

  3、反馈交流,教师适当引导

  (1)、逐一列表法:

  生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

  师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

  (2)、跳跃列表法

  生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

  师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

  (3)、折中列表法

  生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

  师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

  像同学们刚才的这几种解法,我们把它称为列表法。

  [设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

  4、画图法(板书:画图法)

  师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

  5、归纳算法

  解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

  三、巩固练习

  生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

  (1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

  (2)、学生独立解决,全班交流。

  四、全课

  通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

鸡兔同笼教案 篇六

  预设:

  学生1:列表法能很清晰地解决这个问题。

  学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

  教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

  学生小组交流汇报。

  预设:

  学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

  学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

  【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

  4.数形结合理解假设法。

  教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

  (1)假设全是鸡。

  教师:我们先看表格中左起的第一列,8和0是什么意思?

  8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)

  32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

  4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

  6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

  8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

  (3)提出假设法概念。

  刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

  (板书:假设法)

  【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

  (三)知识运用

  学生独立完成古代趣题。

  【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

  (四)

全课小结

  这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

相关文章

一年级语文上册教案(精选6篇)

作为一名人民教师,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们应该怎么写教案呢?下面是小编帮大家整理的一年级语文上册教案,欢迎大家分享。一年级语文上册...
教案大全2017-04-06
一年级语文上册教案(精选6篇)

优质课一等奖《阿长与山海经》教案【最新6篇】

作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编收集整理的优质课一等奖《阿长与山...
教案大全2014-04-02
优质课一等奖《阿长与山海经》教案【最新6篇】

足球传控球技术教案(优质6篇)

在教学工作者开展教学活动前,时常要开展教案准备工作,教案是备课向课堂教学转化的关节点。快来参考教案是怎么写的吧!下面是小编为大家收集的足球传控球技术教案范文(通用8篇),希望对大家有所帮助。足球传控球...
教案大全2011-02-07
足球传控球技术教案(优质6篇)

小学英语教案模板范例,很标准的哦。(精彩3篇)

小学英语教案模板范例,很标准的哦。 【#小学英语# 导语】没有秋霜的锤打,没有秋风的锻铸,秋天的枫叶怎会周身红彻?愿你像这火红的枫叶,在生活的风霜中染成鲜红的颜色!以下是为大家整理的《小学英语教案模板...
教案大全2015-08-02
小学英语教案模板范例,很标准的哦。(精彩3篇)

《你一定会听见的》教案设计(最新6篇)

作为一名教学工作者,很有必要精心设计一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么优秀的教案是什么样的呢?下面是小编收集整理的《你一定会听见的》教案设计,供大家参考借鉴...
教案大全2015-02-08
《你一定会听见的》教案设计(最新6篇)

雨霖铃的教案(实用6篇)

作为一位杰出的教职工,就难以避免地要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。我们该怎么去写教案呢?下面是小编为大家整理的雨霖铃的教案(精选6篇),欢迎阅读与收藏。...
教案大全2013-09-05
雨霖铃的教案(实用6篇)