《分数除以整数》教案设计(实用6篇)
《分数除以整数》教案设计 篇一
教案名称:分数除以整数
教学对象:初中学生
教学目标:
1. 学生能够理解分数除以整数的概念和运算规则;
2. 学生能够运用所学知识解决实际问题;
3. 学生能够灵活运用分数除以整数的方法。
教学内容:
1. 引入:通过提问或实例引入分数除以整数的概念;
2. 讲解:讲解分数除以整数的运算规则和方法;
3. 练习:设计一系列练习题,让学生巩固所学知识;
4. 拓展:引导学生运用所学知识解决实际问题。
教学步骤:
1. 引入(5分钟):
通过提问或实例引入分数除以整数的概念,让学生思考并回答问题,激发学生的学习兴趣。
2. 讲解(15分钟):
讲解分数除以整数的运算规则和方法,包括将分数转化为小数进行计算的方法,以及如何简化结果的方法。
3. 练习(20分钟):
设计一系列练习题,让学生进行分数除以整数的计算练习。可以逐步增加难度,从简单的计算开始,逐渐引导学生解决更复杂的问题。
4. 拓展(20分钟):
引导学生运用所学知识解决实际问题,如购物计算、食谱调整等。让学生通过实际问题的解决,巩固所学知识,并理解分数除以整数在实际生活中的应用。
5. 总结(5分钟):
对本节课的内容进行总结,概括分数除以整数的运算规则和方法,并鼓励学生在日常生活中多运用所学知识。
6. 作业布置(5分钟):
布置相关的作业,要求学生运用所学知识完成一定数量的分数除以整数的计算题目,并写出解题过程。
教学评估:
1. 教师观察学生在课堂上的回答和练习情况,了解学生对分数除以整数的理解和掌握情况;
2. 批改学生的作业,评估学生对分数除以整数的运算规则和方法的掌握程度;
3. 针对学生的不足,进行个别辅导和指导,帮助学生更好地理解和掌握分数除以整数的知识。
通过本节课的教学,学生将能够理解分数除以整数的概念和运算规则,掌握分数除以整数的方法,并能够运用所学知识解决实际问题。
《分数除以整数》教案设计 篇二
教案名称:分数除以整数
教学对象:初中学生
教学目标:
1. 学生能够理解分数除以整数的概念和运算规则;
2. 学生能够运用所学知识解决实际问题;
3. 学生能够灵活运用分数除以整数的方法。
教学内容:
1. 引入:通过实例引入分数除以整数的概念;
2. 讲解:讲解分数除以整数的运算规则和方法;
3. 练习:设计一系列练习题,让学生巩固所学知识;
4. 拓展:引导学生运用所学知识解决实际问题。
教学步骤:
1. 引入(5分钟):
通过实例引入分数除以整数的概念,让学生通过具体的例子来理解分数除以整数的含义和运算规则。
2. 讲解(15分钟):
讲解分数除以整数的运算规则和方法,包括如何将分数转化为小数进行计算,以及如何简化结果的方法。
3. 练习(20分钟):
设计一系列练习题,让学生进行分数除以整数的计算练习。可以从简单的计算开始,逐渐增加难度,让学生逐步掌握分数除以整数的方法。
4. 拓展(20分钟):
引导学生运用所学知识解决实际问题,如购物计算、食谱调整等。通过实际问题的解决,让学生更好地理解分数除以整数在实际生活中的应用。
5. 总结(5分钟):
对本节课的内容进行总结,概括分数除以整数的运算规则和方法,并鼓励学生在日常生活中多运用所学知识。
6. 作业布置(5分钟):
布置相关的作业,要求学生运用所学知识完成一定数量的分数除以整数的计算题目,并写出解题过程。
教学评估:
1. 教师观察学生在课堂上的回答和练习情况,了解学生对分数除以整数的理解和掌握情况;
2. 批改学生的作业,评估学生对分数除以整数的运算规则和方法的掌握程度;
3. 针对学生的不足,进行个别辅导和指导,帮助学生更好地理解和掌握分数除以整数的知识。
通过本节课的教学,学生将能够理解分数除以整数的概念和运算规则,掌握分数除以整数的方法,并能够运用所学知识解决实际问题。
《分数除以整数》教案设计 篇三
教学目标:
1、在解决具体问题的过程中,借助直观图示,理解分数除法的意义,探索分数除以整数除法的计算方法,并能正确进行计算。
2、经历探索分数除以整数计算方法的过程,初步形成独立思考和探索的意识。
3、让学生感受成功的体验。
教学重点、难点:
分数除以整数的计算方法
教具、学具准备:
多媒体、课件
教学过程:
一、教学意义
师:今天来了几位听课的老师,你想怎样在这节课上表现自己?
学生交流。
师:嗯,老师期待你们精彩的表现,不过,不要太紧张,这节课我们只是来帮小猴子解决一些问题,不是很难,不信,你瞧!
出示问题:
(1)每只猴子吃半个桃子,四只猴子一共吃几个桃子?
(2)两个桃子,平均分给四只猴子,每只猴子分多少个?
(3)两个桃子,分给每只猴子半个,可以分给多少只猴子?
学生解决
师:观察这三个算式,想一想,分数除法的意义是怎样的呢?
总结出示:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
同位互说。
二、探究方法 ,解决问题
1、提出问题,板书课题
师:通过解决小猴子吃桃子的问题,同学们掌握了分数除法的意义,接下来我们看看小猴子又要干什么。
出示课件:
师:根据这条信息,你能帮助小猴子解决怎样的数学问题?
出示问题:
1)做一件背心需要花布多少米?
2)做一件裤子需要花布多少米?
师:对于问题1),该怎样列式呢?
学生列式(为什么这样列式?)
师:观察算式,它有什么特点?
师板书课题。
2、探究方法,汇报交流
师:这个算式该如何算呢?
学生以小组为单位讨论交流。
师巡视指导。
小组汇报
① 折纸或画图的方式(学生说一说)
② 9/10÷3=(9÷3)/10=3/10
师(板书):你是怎么想的?
③ 9/10÷3=0.9÷3=0.3
④ 9/10÷3=9/10×1/3
师(板书):你是怎么想的?
学生说自己的想法(引导学生说:把9/10米平均分成3份,是求9/10的三分之一是多少,所以可以把9/10÷3转化为9/10×1/3。)
师:同学们真棒,探究出这么多方法,你认为哪种方法好呢?
初步优化。
3、师:对于问题2),你能自己解决吗?
学生独立解决。全班交流,订正。
进一步优化方法。
师:看来你们已经初步掌握了计算的方法,那我们试一试计算这两个题?
出示试一试:6/7÷5
5/11÷4
师:现在你认为哪种方法好呢?
4、观察对比,总结方法
师:观察刚才我们的计算过程,谁愿意来总结一下计算方法呢?
学生交流,总结方法,并明白各种方法的局限性及普遍性。
师(出师课件)小结:同位之间互相说一说。
师:还有什么特别注意的吗?强调0除外以及红颜色字眼。
(为了检验你是否真正掌握了方法,老师要考考你)
出示考考你:
4/5÷4=4/5×() 2/3÷6=2/3○() 2/5÷2=()×()
三、反馈练习,巩固提高
师:同学们已经学习了分数除以整数的计算方法,那下面就到了考验大家的时刻了,有信心接受挑战吗?
课件出示:
1、争先恐后 连一连
5/9÷5 7/8÷6 1/10÷9
7/8 ×1/6 1/10×1/9 5/9×1/5
2、大显身手 算一算
10/11÷2 8/9÷8 28/19÷7 15/22÷5
3/2÷2 7/17÷4 2/9÷4 21/25÷14
3、火眼金睛 判一判
(1)2/5÷7=2/5×1/7=2/35 ()
(2)1/2÷3=1/2÷1/3=1/6 ()
(3)3/8÷3=3/8×3=8 ()
(4)3/9÷3=(3÷3)/(9÷3)=1/3 ()
4、解决问题
四、总结交流
师:今天跟大家共同学习,老师非常高兴!你的心情如何呢?你有什么收获呢?
学生交流。
《分数除以整数》教案设计 篇四
一、教学目标
1.经历总结规律和探索分数除以整数的计算方法的过程。
2.掌握分数除以整数的计算方法,会计算分数除以整数。
3.积极参与数学活动,感受数学与生活的密切联系,激发数学学习的兴趣。
二、学情分析
学生们在前面的学习已经知道了整数除法的意义及其计算方法,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。,学生运用折纸的方法探索分数除以整数的计算方法。学生在“玩”的过程中能够感知分数除以整数的基本算理,进而归纳出分数除以整数的计算方法。
三、重点难点
教学重点:分数除法的计算方法,会计算分数除以整数的除法。
教学难点:探索分数除以整数的计算方法。
四、教学过程
活动一(复习探索)
1复习切入:有一只小青蛙想要找到自己的妈妈,必须要通过这难题一道道的难题闯关,你愿意帮它找到妈妈吗?
通过上面的练习老师知道同学们的本事真不小,接下来老师要考考你,看看你有没有和孙悟空火眼金睛的本事。
2观察规律:观察每一组的两个算式,你发现了什么?(给学生观察的时间)
学生小组内谈谈你的发现。(教师倾听巡视)
学生谈发现,试着用一句话概括一下发现。
3教师小结:一个数除以另一个数(师板书)0除外,就等于数这个乘另一个数的倒数。
你们果真有火眼金睛的本事,发现了数学中的一个规律。
我们刚才发现整数除以整数,就等于整数乘这个数的倒数.那这个规律适用于分数除法吗?
活动二(发现规律)
探索新知
1、学生猜一猜。到底是不是像同学们想得那样呢?我们以分大饼饼为例,试着想一想。(出示,指生读题)
2、二分之一张是什么意思?把它平均分成3份又是什么意思?(生:二分之一张就是半张;把它平均分成3份就是把半张披萨平均分成3份。)?教师提问:把半张披萨平均分成3份,每份是整张披萨的几分之几?你能列出算式吗?生列式。
3、请大家拿出课前准备好的圆形纸片,折一折涂,看看每份是整张的几分之几?开始。
4、生动手操作。教师巡视。集体交流(找几人说说想法。)
师:刚才,我们通过动手操作,知道了,那计算你会吗?师生共同交流,教师板书。
做到这,咱们看看,刚才咱们发现的规律适用于分数除法吗?生说。
5、总结:分数除以一个数(0除外)等于分数乘这个数的倒数。(出示)
读一读,记一记你的发现
活动三(练习巩固)
1、初步练习(两道基本的习题巩固所学)
2、趣味练习(通过打气球的游戏进一步加深练习)
3、你是不是会利用今天学到的知识解决生活中的问题。
第1题,学生读题,师生一起借助线段图分析题意,然后学生自己列式计算,并交流计算过程。
第2题六一儿童节期间,学校用了
平方米的红布做了一块4米长的宣传标语。这块标语的宽是多少米?自己读题。这个问题你能解决吗?想一想为什么用除法列算式?
活动四(课堂小结)
通过今天的学习,你有什么收获?
《分数除以整数》教案设计 篇五
本课题教时数:本教时为第2教时备课日期9月9日
教学目标
1、使学生理解整数除法分数的计算方法,并能正确地进行计算。
2、培养学生分析、推理和概括等思维能力。
教学重难点
整数除以分数的计算方法。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习旧知
二、教学新课
一、 巩固练习
四、小结。
五、作业
1、口算
3/431/542/766/112
分数除以整数通常是怎样计算的?
2、复习第(1)题
学生口答算式与结果。
这一题已知什么数量,要求什么数量?按怎样的数量关系求?
出示数量关系式:速度=路程时间
3、口答填空
3/10小时是()个1/10小时。
1小时是()个1/10小时。
4、引入新课
1、教学例2
这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?
(183/10)
画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?
根据学生的回答把这条线段平均分成10份,其中的3份用颜色线画出。
师边述说边画线段。
问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?
要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?
根据回答把线段图补充完整。
讨论:按这样来想,你认为第一步求什么?怎样求?
(1)1/10小时行的千米数是:183
为什么要用183?183能不能转化成用乘法来计算?
讨论:1/10小时行的`千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?
(2)1小时行的千米数是:181/310
(3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?
问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?
从上面的推想过程看出,183/10转化成什么样的计算了?
比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?
2、小结。
1、练一练1
2、练一练2整数除以分数是怎样计算的?
3、练习八2整数除以分数和整数乘分数在计算时有什么不同?
4、练习八3
分组练习
做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?
说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。
练习八、1、4、5
181/310
=18(1/310)
=1810/3
课后感受
此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。
《分数除以整数》教案设计 篇六
教学目标
1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。
2.能运用法则正确地进行计算。
3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。
教学重点
整数除以分数计算法则的推导过程。
教学难点
如何区别、统一分数除以整数、整数除以分数两个计算法则。
教学过程设计
(一)复习旧知
1.说出下面各题的倒数。(投影出示)
2.把算式补充完整。(投影出示)
问:分数除以整数的法则是什么?谁不变?谁变?
生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)
问:分数除以整数是把谁变成它的倒数了?为什么?
生:把整数变成它的倒数了,因为整数处在除数的位置。
师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)
(二)新授教学
1.一辆汽车2小时行驶90千米。1小时行驶多少千米?
问:①谁会列式计算?
板书: 02=45(千米)
②根据什么这样列式?
生:根据路程时间=速度。
问:要求1小时行驶多少千米就是求什么?
生:求汽车的速度。
问:怎样列式?为什么这样列式?
怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。
师:根据你们说的老师画图。用一条线段的长表示1小时,把它平
问:怎么求?为什么这样求?
(2)要求1小时行多少千米,怎么求?
算式变化形式:
根据上面的推导过程可得出:
这两个算式相等吗?
我们把这道题完成。
答:汽车1小时行驶45千米。
(3)观察算式:谁没变?谁变了?怎么变的?
讨论:整数除以分数的计算法则是什么?
谁能说一说?
板书:整数除以分数等于整数乘以这个分数的倒数。
同桌互相说一说。
谁愿意给大家说一说?
(4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。
订正,错的说错在哪里,并改正过程。
(三)巩固练习
1.投影出示。
(1)分数除以整数(0除外)等于分数乘以整数的倒数。
(2)整数除以分数,等于整数乘以分数的倒数。
问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?
生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。
问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。
问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?
生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。
2.把下面各题补充完整。
3.计算。在本上写过程,得数填在书上。
订正,指名把过程写在投影片上。
错的同学说明错因。
4.判断。对的举,错的举,并说明理由。
师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。
(四)课堂总结
这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?
(五)作业
课本第36页第1,3,4题。
课堂教学设计说明
本节课的内容是整数除以分数的计算法则。这节课有两个难点:
第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。
第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。