《商不变的规律》教学教案设计【优选6篇】
《商不变的规律》教学教案设计 篇一
教案名称:商不变的规律
学科:经济学
年级:高中
课时:2课时
教学目标:
1. 了解商不变的规律,即供求关系决定价格的变化。
2. 掌握供给曲线和需求曲线的画法。
3. 理解价格对供需关系的影响,以及价格调整对市场的影响。
4. 通过案例分析,运用供求关系解决实际问题。
教学重点:
1. 供给曲线和需求曲线的画法。
2. 价格对供需关系的影响。
3. 运用供求关系解决实际问题。
教学难点:
1. 理解价格调整对市场的影响。
2. 运用供求关系解决实际问题。
教学准备:
1. 教师准备PPT演示文稿。
2. 学生准备纸和笔。
教学过程:
1. 导入(5分钟)
介绍商不变的规律的概念,并引入供给曲线和需求曲线的概念。
2. 供给曲线和需求曲线的画法(15分钟)
教师通过PPT演示,讲解供给曲线和需求曲线的画法,并在黑板上示范画出一个供给曲线和一个需求曲线。
3. 价格对供需关系的影响(15分钟)
教师通过PPT演示,讲解价格对供需关系的影响,并引导学生思考价格上涨和价格下跌对供求关系的影响。
4. 价格调整对市场的影响(15分钟)
教师通过PPT演示,讲解价格调整对市场的影响,并通过实例让学生理解价格调整对市场的影响。
5. 运用供求关系解决实际问题(20分钟)
教师给学生提供一些实际案例,让学生运用所学知识解决实际问题,并组织学生进行讨论和分享。
6. 总结(5分钟)
教师对本节课的内容进行总结,并强调商不变的规律对市场的重要性。
教学延伸:
教师可以引导学生进行更多的案例分析,提高学生运用供求关系解决实际问题的能力。同时,可以引导学生进行小组讨论,进一步加深对商不变的规律的理解。
教学反思:
本节课通过PPT演示、案例分析和讨论等多种教学方法,使学生能够全面理解供求关系对价格变化的影响,并能够运用所学知识解决实际问题。然而,教学过程中可能存在时间安排不合理的问题,需要根据实际情况进行适当调整。
《商不变的规律》教学教案设计 篇二
教案名称:商不变的规律
学科:经济学
年级:高中
课时:2课时
教学目标:
1. 理解商不变的规律,即供求关系决定价格的变化。
2. 掌握供给曲线和需求曲线的画法。
3. 理解价格对供需关系的影响,以及价格调整对市场的影响。
4. 运用供求关系解决实际问题。
教学重点:
1. 供给曲线和需求曲线的画法。
2. 价格对供需关系的影响。
3. 运用供求关系解决实际问题。
教学难点:
1. 理解价格调整对市场的影响。
2. 运用供求关系解决实际问题。
教学准备:
1. 教师准备PPT演示文稿。
2. 学生准备纸和笔。
教学过程:
1. 导入(5分钟)
介绍商不变的规律的概念,并引入供给曲线和需求曲线的概念。
2. 供给曲线和需求曲线的画法(15分钟)
教师通过PPT演示,讲解供给曲线和需求曲线的画法,并在黑板上示范画出一个供给曲线和一个需求曲线。
3. 价格对供需关系的影响(15分钟)
教师通过PPT演示,讲解价格对供需关系的影响,并引导学生思考价格上涨和价格下跌对供求关系的影响。
4. 价格调整对市场的影响(15分钟)
教师通过PPT演示,讲解价格调整对市场的影响,并通过实例让学生理解价格调整对市场的影响。
5. 运用供求关系解决实际问题(20分钟)
教师给学生提供一些实际案例,让学生运用所学知识解决实际问题,并组织学生进行讨论和分享。
6. 总结(5分钟)
教师对本节课的内容进行总结,并强调商不变的规律对市场的重要性。
教学延伸:
教师可以引导学生进行更多的案例分析,提高学生运用供求关系解决实际问题的能力。同时,可以引导学生进行小组讨论,进一步加深对商不变的规律的理解。
教学反思:
本节课通过PPT演示、案例分析和讨论等多种教学方法,使学生能够全面理解供求关系对价格变化的影响,并能够运用所学知识解决实际问题。然而,教学过程中可能存在时间安排不合理的问题,需要根据实际情况进行适当调整。
《商不变的规律》教学教案设计 篇三
教学目标:
1. 理解和掌握商不变的规律,并能运用这一规律口算有关除法,培养学生的观察、概括以及提出问题、分析问题、解决问题的能力。
2.学生在参与观察、比较、概括、验证等学习过程中,体验成功,收获学习的快乐。
教学重难点:
1重点:理解归纳出商不变的规律。
2.难点:会初步运用商不变的规律进行一些简便计算。
教学过程
一、创设情境,激发兴趣
导入:同学们想玩游戏吗?今天我们就一起玩一个自编除法的游戏。老师这有三个数字——8、2、0、,每个数字在一道算式中可以出现一次、两次或多次,也可以一次也不出现,但是要求每一道算式中的商必须等于4,限时一分钟,看谁写得多! 预测:
8÷2=4
80÷ 20=4
800÷ 200=4
8000÷ 2000=4
88÷ 22=4
888÷ 222=4 8888÷ 2222=488888÷ 22222=4 880 ÷220=4 8800 ÷2200=488000÷ 22000=4
发现:我们无论编出多少道不同的算式,什么是不变的?(板书:商不变)
商不变,是什么在变呢?(板书:被除数和除数)
探究:被除数和除数究竟有怎样的变化,商却不变呢?这节课我们一起来研究商不变的规律(板书课题)
二、合作学习、探究规律
探究:请观察我们自己编的一组算式,看看被除数和除数究竟是怎样变化的而商却不变?
要求:可以自己研究,也可以小组内共同探究。
交流:说出自己的发现。
预测1:学生对于“同时”、“相同”的用词不一定能用的准,理解不一定能非常透彻。
解决:让学生在自己充分的理解,叙述的基础上提炼出“同时”、“相同”一词。
预测2:对于“零除外”,有些同学可能会想到这一情况,但对于其原因不是很清楚。
解决:让学生实际举例,使其充分理解——零不能做除数。
三、应用规律,反馈内化
1.在○里填上运算符号,在 里填上适当的数。
(1)16÷ 8=(16× 2)÷ (8 ×□ )
(2)480÷80=(480÷10)÷(80○10)
(3)150÷25=(150○□ )÷(25○□)
2.口算。
竞赛:一分钟内能完成几道题,并说说做的快的原因。
3.简算
400÷25=你会算吗?怎样变成我们学过的形式在计算呢?
预测:400÷25=(400× 4)÷ ( 25× 4)=1600÷ 100=16 400÷25=(400÷5)÷(25÷5)=80÷5=16
四、总结延伸,应用拓展
今天我们一起研究了商不变的规律,请同学们大胆猜测一下,在乘法,加法、减法中会不会也有积、和、差不变的规律呢?请同学们利用课余时间与学习伙伴一起研究、思考。 教学反思:在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,效果很好。 上完本节课有几点收获:
1、由学生感兴趣的游戏引入新课,能激发学生探究新知的欲望;
2、练习内容形式多样,由浅入深,让学生进一步内化商不变的规律;
3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系;
4、揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后提示学生0乘任何数都得0,0不能当做除数,然后总结出商不变的规律。然而也有不足之处:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用过程中,讲解简便运算后,总结不到位:由于在讲解练习题时,把握不熟练:在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!
《商不变的规律》教学教案设计 篇四
一、教材分析:
“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。
二、学生分析
本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。
三、教学目标:
依据新课标要求,结合本课教学内容和学生的认知规律,确定如下学习目标。
知识目标:探索与发现商不变的规律,其次是理解并掌握商不变的规律,而且能利用商不变的规律,进行一些除法运算的简便运算。 能力目标:初步培养学生主动探索,独立获取知识的能力和运用商不变的规律解决生活中的数学问题的能力。
情感目标:渗透数学来自于生活实践的辨证唯物主义思想,培养学生初步的数学应用意识,唤起学生学数学的兴趣。
教学重点:探索与发现商不变的规律。
教学难点:运用商不变的规律进行除法的简便计算。
教法:观察法、对比法。
学法:小组合作交流
教学过程:
一、激趣引思,导入新课
1、创设情境:
秋天的时候,猴王在美丽的花果山上为小猴分桃子。猴王说:“我把8个桃子平均分给2只猴子。”小猴听了直叫:“太少,太少。”猴王又说:“我把80个桃子平均分给20只猴子。”小猴听了试着说:“能不能再多分一点?”猴王又说:“我拿800个桃子平均分给200只猴子,这回行了吧?”这时小猴笑了,猴王也跟着笑了。
2、启发提问,小组讨论:为什么小猴和猴王都笑了?谁是聪明的一笑?
学生分小组交流。
能把算式列出来吗?
二、探讨新知
1、全班交流。
板书:8÷2=4
80÷20=4
800÷200=4
2、师:在除法算式里,除号左边的8、80、800这些数我们称作为什么?(被除数)
除号右边的2、20、200这些数我们称作什么?(除数) 除得的结果我们又称作什么?(商)
3、师:如果以第一个等式为标准,下面两个等式中的被除数、除数和商,什么变了,什么不变?(被除数、除数变了,商不变)
这节课我们就来讨论“商不变的规律”(板书课题:商不变的规律)
4、仔细观察黑板上的三组算式,你能说说被除数和除数都是怎样变化的吗?
先独立思考,再和同桌互相讨论
5、汇报:
我们先从上往下看,被除数和除数发生了什么变化?
(被除数从8到80,乘10,除数从2到20,也是乘10; 被除数从80到800,乘10,除数从20到200,也是乘10。) 再从下往上看,被除数和除数又发生了什么变化?
(被除数和除数同时除以相同的数)
6、你能像猴王一样分桃子吗?试试看,写一些你的算式 ( )÷( )=( )
( )÷( )=( )
( )÷( )=( )
7、你能从我们黑板上的一组算式以及你写的算式中,你发现了什么规律? 在纸上写一写
8、汇报:重点找一组乘的数不相同
师:谁能用一句话概括这两个规律?引导学生说出规律描述:被除数和除数同时乘或除以相同的数(零除外),商不变。
三、巩固练习,深入讨论
师:刚才通过大家的努力,我们找到被除数和除数的变化规律,使得商不变。现在老师要看看大家是否真正理解了
判断题:(师:听清楚要求:用手势表示对错)
(1)75÷15=(75÷5)÷(15÷5)
(2)90÷30=(90×0)÷(30×0)
师:乘以0可以吗?为什么?(因为0不能作为除数,没有意义) 看来我们要把0特殊对待,写上(0除外)
(3)25×3=(25×4)×(3×4)
师:这样对吗?口算左边75,右边1200,为什么会出现这样的问题? 商不变的规律适合在什么运算中?(除法中)
(4)60÷12=(60÷2)÷12
(5)15÷5=(15+5)÷(5+5)
(6)80÷4=(80×6) ÷(4×2)
师:同学们今天学得真细心!我们已经运用集体的智慧发现了完整的商不变规律,我们一起来读一读吧!
师:读完了这个规律,你觉得运用这个规律时应该注意什么,有什么需要提醒大家的?
(除法,同时,相同的数,零除外,教师标出重点符号)
师:大家都提醒了别人这些需要注意的,智慧老人要考考你们到底会不会运用商不变的规律
四、应用知识——星级挑战
看例子:950÷50=(950÷10)÷(50÷10)= 95÷5
《商不变的规律》教学教案设计 篇五
〖教材分析〗
这个教材内容是在学生经历了“有趣的算式”、“乘法的结合律”、“乘法的分配律”三个探索与发现的学习过程后,教材再次以“探索与发现”为主题,其宗旨是让学生经历观察、对比被除数与除数的变化及对应的商的关系,从而发现“商不变的规律”的学习过程,感受探索与发现的成功与快乐,进一步掌握探索与发现的方法;并使学生在深刻理解了“商不变的规律”的内涵的基础上,引导学生运用知识解决计算中和实际中的问题。
〖教学目标〗
知识技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。
情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
〖教学重点〗
使学生理解并归纳出商不变的规律。
〖教学难点〗
使学生会初步运用商不变的规律进行一些简便计算。
〖教学过程〗
一、创设情境,激发兴趣。
师:同学们,喜欢听故事吗?今天柯老师给你们讲一个故事。(课件演示故事内容)
猴子分桃
花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:“给你8个桃子,平均分给2只小猴子。”小猴子一听,连连摇头,“不行,太少了!太少了!”“那就给你80个桃子,平均分给20只猴子。”小猴子喊道:“还少,还少。”“还少呀?那就给你800个桃子,平均分给200只猴子吧。” 小猴子得寸进尺,试探地说:“大王开恩,再多给点行不行呀?”猴王一拍桌子,显 出慷慨的样子:“那好吧,给你8000个桃子平均分给2000只小猴子,这下你该满 意了吧。”小猴子笑了,猴王也笑了。
师:为什么小猴子笑了,猴王也笑了?
生1:因为猴子吃到了了更多的桃子了。
生2:因为无论怎样分,每个猴子吃到的个数都一样,都是4个。
师:是这样的吗?你是怎么知道的呢?
生:8÷2=4 80÷20=4 800÷200=4 8000÷2000=4
师:哦,原来是这样,你真聪明!为什么每只猴子每次分到的桃子都一样呢?这节课我们就一起来研究这个问题。
二、探索规律,概括性质。
(一)观察算式,发现规律。
(1)课件出示:
8÷2=4 80÷20=4 800÷200=4 8000÷2000=4
(2)观察讨论:
A、从上往下看,被除数和除数有什么变化?商有什么变化?
(学生观察讨论后,代表汇报结论,师板书:被除数和除数都乘一个数,商不变。)
B、从下往上看,被除数和除数有什么变化?商有什么变化?
(学生观察思考,个别汇报结论,师板书:被除数和除数都除以一个数,商不变。)
C、你能举些例子说明你的发现吗?
(学生举例,各抒己见)
D、要使商不变,被除数和除数都乘0或除以0,可以吗?为什么?
( 生小组讨论,再代表汇报,举例说明)
师:真棒,能把把你的发现用一句话说给大家听听吗?
(学生尝试归纳发现的规律,师板书规律)
(二)教师小结,揭示课题。(板书课题)
三、反馈练习,深化认识。
(1)完成P74的试一试。
(2)填数。
20÷5=4
( 20 ×6 )÷( 5 × )=4
( 20 ÷ )÷( 5 ÷5 )=4
( 20 × )÷( 5×8 )=4
(3)在下面等式中的○里填上运算符号,在□里填上适当的数。
16÷8=2
(16÷ )÷(8○2)=2
(16○3)÷(8× )=2
(16÷ )÷(8÷ )=2
3、已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。
⑴(48×5)÷(12×5) =4 ( )
⑵(48×3)÷(12×4) =4 ( )
⑶(48÷6)÷(12×6) =4 ( )
⑷(48÷4)÷(12÷4) =4 ( )
4、抢答。
⑴在一道除法算式里,如果被除数除以5,除数也除以5,商( )。
⑵在一道除法算式里,如果被除数乘10,要使商不变,除数( )。
⑶在一道除法算式里,如果除数除以100,要使商不变,被除数( )。
四、课堂总结。
谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)
五、作业布置。
1、从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。
72÷9= 36÷3= 80÷4=
720÷90= 360÷30= 800÷40=
7200÷900= 3600÷300= 8000÷400=
2、填空(在□中填数,在○中填运算符号)
200÷40=5
(200×4)÷(40×□)=5 (200÷2)÷(40÷□)=5
(200×3)÷(40○□)=5 (200÷4)÷(40○□)=5
(200×□)÷(40○□)=5
《商不变的规律》教学教案设计 篇六
【教学目标】
1、 使学生结合具体情境,通过合作探究学习,经历观察、比较和探讨的数学研究过程,在已有知识基础上放手探讨商不变的规律。
2、 通过本节课的教学,使学生理解掌握商的变化性质,会用商的变化性质对口算除法进行简便运算。
3、 使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣,培养学生善于观察、勤于思考、勇于探索的习惯。渗透符号化、转化、模型、“变与不变”的函数等思想和科学的研究态度。
【教学重难点】
引导学生通过观察、比较、探讨发现并总结商的变化规律,获得探索规律的经验和方法。
【教学流程】
(一)创设情境,渗透规律。
【设计意图:激发兴趣,引出故事中蕴含的算式,通过童话故事初步的直观感受到商不变的规律。】
1.故事《猴子分桃》花果山风景秀丽气候宜人,那儿住着一群猴子,猴王今天要给小猴子分桃子。猴王说:我给你6个桃子,你们3只小猴去分吧,小猴一算就说:这也太少了吧,能不能多分点?猴王说:可以,那给你60个桃子,你去分给30只小猴,怎么样?小猴挠挠头说:大王,能不能再多给点?大王一拍桌子显出慷慨大方的样子说:那好吧,给你600个桃子,你分给300个小猴,你总该满意了吧?
小猴笑了,猴王也笑了,谁的笑是聪明的一笑,为什么?
2.根据故事情境列出算式
(二)自主探究,发现规律。
1.初步观察,引出课题
师:无论怎么分,每个小猴得到几个桃?2在算式里是什么?商一直都没变谁一直在变呢?被除数和除数一直都在变商却一直不变,这是为什么呢?这里面隐藏着什么秘密呢?今天就让我们来一场探秘之旅共同寻找“商不变的规律”。(板书课题)
2.补充素材,渗透函数
【设计意图:为学生建立商不变规律的模型提供素材,并通过观察图渗透函数思想,感受两种变化量的正比例关系。】
(1)师:要想研究出一个规律,仅靠一组算式不充分不科学,老师给你们提供一幅图你们观察下图中讲了件什么事?(出示图片)
(2)观察图片你有什么发现?(引导学生感受到随着支数越来越多需要的钱数也越来越多)(3)列式感受商不变:不管怎么变,什么一直没变?你能列出算式吗?
3.比较算式,深入观察
【设计意图:分组自主选择研究素材观察节约教学时间,把时间用在全班交流上,通过交流发现大量不同的研究素材呈现出共同的规律,在探讨比较去除无关因素后建立商不变规律的模型。】
(1)任选一组算式观察:
第一组: 第二组:
6 ÷ 3 = 2 10 ÷ 2 = 5
60 ÷ 30 = 2 20 ÷ 4 = 5
600 ÷ 300 = 2 30 ÷ 6 = 5
40 ÷ 8 = 5
①从上往下观察,被除数怎样变化?同时除数怎样变化?商呢?
再从下往上看一看或在同一组算式中任选两道观察比较。
②把你的发现和同伴交流一下。
(2)全班交流,互相补充发言
4.归纳商不变的规律
(1)根据发现到的规律写一组符合这样规律的算式。
(2)总结归纳规律,教师板书:被除数和除数都乘或除以一个相同的数(0除外),商不变。
(四)巩固练习,深化理解
1.口算应用,加深理解
根据每组题中第1题的商,写出下面两题的商。
72÷9= 36÷3= 80÷4=
720÷90= 360÷30= 800÷40=
7200÷900= 3600÷300= 8000÷400=
2.简便计算,灵活运用
(1)出示:900÷25让学生快速口答。
(2)播放微课进行学法指导
【设计意图:通过学生借助微课自学,运用商不变规律进行简便计算。学会观察算式数据自身特点灵活用规律解决问题的基本方法。】
(3)简便计算
(五)回顾反思,建构模型。
师:同学们,我们一起来回顾一下今天的探究过程。我们是怎么发现这个规律的?首先我们从故事开始,引发我们的思考。然后我们观察算式,发现规律。然后我们举些例子,验证规律。最后我们归纳概括,总结规律。
师:请同学们看大屏幕上的这两组算式,他们之间也存在着变化规律,课下请同学们用学到的这个方法探究他们的规律,好吗?
师:同学们,我们在前面学习了积的变化规律,今天又学习了商不变的规律,你还有什么新的猜想吗?(学生大胆猜想)既然是猜想,就免不了会有错误。但是猜想的过程,就是追求真理的过程。同学们在学习过程中,要敢于猜想,善于猜想,这样才能有所发现,有所创造!下课!
【板书设计】
商不变的规律
6 ÷ 3 = 2 10 ÷ 2 = 5
60 ÷ 30 = 2 20 ÷ 4 = 5
600 ÷ 300 = 2 30 ÷ 6 = 5
40 ÷ 8 = 5
被除数和除数都乘或除以一个相同的数(0除外),商不变。
【教学反思】
在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,通过交流发现大量不同的研究素材呈现出共同的规律,在探讨比较去除无关因素后建立商不变规律的模型。
上完本节课有几点收获:
1、由学生感兴趣的故事引入新课,能激发学生探究新知的欲望,引出故事中蕴含的算式,通过童话故事初步的直观感受到商不变的规律。
2、通过具体情境设计提供研究素材,让学生感受商不变的规律,通过观察比较分析探索商不变的规律并建立该数学模型,进程中合理渗透函数思想,培养学生提升观察、比较归纳的能力。出示了关于数量和总价的关系图,让学生通过观察图渗透函数思想,感受两种变化量的正比例关系,并以此图中单价不变的规律为学生研究商不变规律丰富了研究素材,体会探究一个数学规律的严谨科学的精神。
3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系,让学生分组自主选择研究素材观察节约教学时间,把时间用在全班交流上,通过交流发现大量不同的研究素材呈现出共同的规律,揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后引导学生发现的规律是不是适用于任何数,解决0除外的问题,在探讨比较去除无关因素后最终建立商不变规律的模型。
4、播放微课进行学法指导,通过学生借助微课自学,运用商不变规律进行简便计算。学会观察算式数据自身特点灵活用规律解决问题的基本方法。
不足之处:
1.0除外的问题解决比较片面,不仅因为 0不能当做除数,还因为0乘任何数都得0,所以0才要除外的;
2.练习题ppt中答案有错,课前检查不到位。在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!