八年级上册数学课本教案(优秀3篇)

八年级上册数学课本教案 篇一

标题:如何教授八年级上册数学课本中的整数运算

引言:

整数运算是八年级上册数学课本中的重要内容之一。教师在教授整数运算时,需要让学生掌握整数的加减乘除运算规则,并能够运用所学知识解决实际问题。本文将介绍一种教学方法,帮助教师有效地教授八年级上册数学课本中的整数运算。

一、概述整数运算的基本规则

整数运算的基本规则包括加法、减法、乘法和除法。在教学中,教师可以通过讲解和演示的方式,帮助学生理解整数运算的规则,并进行相关的练习。

二、运用实例进行教学

教师可以选择一些与学生生活相关的实例,帮助学生理解整数运算的应用。例如,可以选择一些与温度、海拔高度等概念相关的问题,让学生通过运用整数运算的规则解决问题。同时,教师还可以设计一些趣味性的问题,增加学生的学习兴趣。

三、运用游戏和活动提升学生的学习积极性

教师可以设计一些游戏和活动,让学生在游戏和活动中进行整数运算的练习。例如,可以设计一个整数运算的竞赛,让学生在一定的时间内完成一系列的整数运算题目,以提高学生的学习积极性和参与度。

四、巩固和拓展知识

在教学的最后阶段,教师可以进行一些巩固和拓展知识的练习。可以选择一些典型的例题,让学生进行解答,并及时给予反馈和指导。同时,还可以提供一些拓展性的题目,让学生进行思考和探究。

总结:

整数运算是八年级上册数学课本中的重要内容,教师在教授整数运算时,可以通过讲解、演示、实例、游戏和活动等多种方式,帮助学生掌握整数运算的规则,并提高学生的学习积极性和参与度。希望本文的教学方法能够对教师在教授八年级上册数学课本中的整数运算时有所帮助。

八年级上册数学课本教案 篇二

标题:如何教授八年级上册数学课本中的平方根和立方根

引言:

八年级上册数学课本中的平方根和立方根是较为抽象和难以理解的概念。教师在教授平方根和立方根时,需要帮助学生理解其概念和运算规则,并能够运用所学知识解决实际问题。本文将介绍一种教学方法,帮助教师有效地教授八年级上册数学课本中的平方根和立方根。

一、概述平方根和立方根的概念

教师可以通过讲解和演示的方式,帮助学生理解平方根和立方根的概念。可以选择一些具体的实例,让学生通过观察和分析,理解平方根和立方根的含义。

二、运用实例进行教学

教师可以选择一些与学生生活相关的实例,帮助学生理解平方根和立方根的应用。例如,可以选择一些与面积、体积等概念相关的问题,让学生通过运用平方根和立方根的规则解决问题。同时,教师还可以设计一些趣味性的问题,增加学生的学习兴趣。

三、运用图形辅助教学

教师可以通过绘制图形的方式,辅助教学平方根和立方根的概念和运算规则。例如,可以绘制一个正方形,让学生通过观察和分析,找出正方形的边长与面积之间的关系,从而理解平方根的含义。

四、巩固和拓展知识

在教学的最后阶段,教师可以进行一些巩固和拓展知识的练习。可以选择一些典型的例题,让学生进行解答,并及时给予反馈和指导。同时,还可以提供一些拓展性的题目,让学生进行思考和探究。

总结:

平方根和立方根是八年级上册数学课本中的较为抽象和难以理解的概念,教师在教授平方根和立方根时,可以通过讲解、演示、实例、图形辅助教学等多种方式,帮助学生理解其概念和运算规则,并提高学生的学习兴趣和思维能力。希望本文的教学方法能够对教师在教授八年级上册数学课本中的平方根和立方根时有所帮助。

八年级上册数学课本教案 篇三

#初二# 导语】虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。没有失败和挫折的人,是永远不会成功的。本篇文章是©为您整理的《八年级上册数学课本教案》,供大家借鉴。





  【篇一】

  教学过程

  I创设情境,提出问题

  回顾上节课讲过的等边三角形的有关知识

  1.等边三角形是轴对称图形,它有三条对称轴.

  2.等边三角形每一个角相等,都等于60°

  3.三个角都相等的三角形是等边三角形.

  4.有一个角是60°的等腰三角形是等边三角形.

  其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

  II例题与练习

  1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

  ①在边AB、AC上分别截取AD=AE.

  ②作∠ADE=60°,D、E分别在边AB、AC上.

  ③过边AB上D点作DE∥BC,交边AC于E点.

  2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

  分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

  3.P56页练习1、2

  III课堂小结:1.等腰三角形和性质;等腰三角形的条件

  V布置作业:1.P58页习题12.3第ll题.

  2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

  【篇二】

  12.3.2等边三角形(三)

  教学过程

  一、复习等腰三角形的判定与性质

  二、新授:

  1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等

  2.等边三角形的判定:

  三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;

  在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

  注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.

  3.由学生解答课本148页的例子;

  4.补充:已知如图所示,在△ABC中,BD是AC边上的中线,DB⊥BC于B,

  ∠ABC=120o,求证:AB=2BC

  分析由已知条件可得∠ABD=30o,如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了

  【篇三】

  教学目标

  1、理解并掌握等腰三角形的判定定理及推论

  2、能利用其性质与判定证明线段或角的相等关系.

  教学重点:等腰三角形的判定定理及推论的运用

  教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.

  教学过程:

  一、复习等腰三角形的性质

  二、新授:

  I提出问题,创设情境

  出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

  学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

  II引入新课

  1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?

  作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

  2.引导学生根据图形,写出已知、求证.

  2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

  强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

  4.引导学生说出引例中地质专家的测量方法的根据.

  III例题与练习

  1.如图2

  其中△ABC是等腰三角形的是[]

  2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

  ②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

  ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

  ④若已知AD=4cm,则BC______cm.

  3.以问题形式引出推论l______.

  4.以问题形式引出推论2______.

  例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

  分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

  练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

  (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

  练习:P53练习1、2、3。

  IV课堂小结

  1.判定一个三角形是等腰三角形有几种方法?

  2.判定一个三角形是等边三角形有几种方法?

  3.等腰三角形的性质定理与判定定理有何关系?

  4.现在证明线段相等问题,一般应从几方面考虑?

  V布置作业:P56页习题12.3第5、6题

  【篇四】

  教学目标

  1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.

  教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.

  教学难点:等腰三角形三线合一的性质的理解及其应用.

  教学过程

  Ⅰ.提出问题,创设情境

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的三角形不是.

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

  Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴.

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等(简写成“等边对等角”).

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数.

  分析:根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形内角和为180°,就可求出△ABC的三个内角.

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等边对等角).

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°

.

  [师]下面我们通过练习来巩固这节课所学的知识.

  Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P

  49~P51,然后小结.

  Ⅳ.课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

  Ⅴ.作业:课本P56习题12.3第1、2、3、4题.

  板书设计

  12.3.1.1等腰三角形

  一、设计方案作出一个等腰三角形

  二、等腰三角形性质:1.等边对等角2.三线合一

点击展开,剩余80%未阅读

相关文章

大班数学活动教案《认识时钟》【通用3篇】

作为一位杰出的教职工,时常需要编写教案,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?以下是小编整理的大班数学活动教案《认识时钟》,欢迎阅读与收藏。活动目标1.了解钟面的构成,认识时针和...
教案大全2013-01-08
大班数学活动教案《认识时钟》【通用3篇】

小学一年级数学开学第一课教案【精简3篇】

小学一年级数学开学第一课教案 【#一年级# 导语】做一份好的教案,可以让老师在教学中游刃有余,显现出足够强大的自信。而且对于教案不仅仅是学校考核的标准之一,一个优秀的教师,以下是?整理的《小学一年级数...
教案大全2019-04-01
小学一年级数学开学第一课教案【精简3篇】

桥教案【推荐6篇】

作为一无名无私奉献的教育工作者,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么优秀的教案是什么样的呢?以下是小编精心整理的桥教案9篇,欢迎大家分享。桥教案...
教案大全2014-05-02
桥教案【推荐6篇】

小班数学教案(实用6篇)

作为一名教学工作者,就不得不需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么写教案需要注意哪些问题呢?下面是小编精心整理的小班数学教案7篇,欢迎阅读,希望大家能够喜欢。小班数学教案 篇1...
教案大全2014-03-01
小班数学教案(实用6篇)

小学五一劳动节主题班会教案三篇(优质3篇)

小学五一劳动节主题班会教案三篇 【#教案# 导语】国际劳动节又称“五一国际劳动节”,是世界上80多个国家的全国性节日。定在每年的五月一日。它是全世界劳动人民共同拥有的节日。?准备了以下内容,供大家参考...
教案大全2012-07-04
小学五一劳动节主题班会教案三篇(优质3篇)

优秀初二语文教案【最新3篇】

作为一名教学工作者,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。那么你有了解过教案吗?以下是小编精心整理的优秀初二语文教案,欢迎大家借鉴与参考,希望对大家有所帮助。教学目标知识与能...
教案大全2018-04-07
优秀初二语文教案【最新3篇】