人教版高一数学期中试题及答案【推荐3篇】

人教版高一数学期中试题及答案 篇一

在高中数学学科中,期中考试是一个重要的评估学生学习成绩的机会。为了帮助同学们更好地复习和备考,我们整理了人教版高一数学期中试题及答案,供大家参考和学习。

本次期中考试包含了高一上册学习内容的各个模块,包括函数、数列、三角函数、解析几何等。试题设计灵活多样,旨在考察学生对知识点的掌握程度和解题能力。

以下是一道试题的详细解析:

【试题】已知函数f(x) = x^2 + 2x - 3,g(x) = 2x - 1,h(x) = x + 1,求解方程f(g(h(x))) = 0。

【解析】首先,根据题目给出的函数关系,我们可以得到f(g(h(x))) = f(2x) = (2x)^2 + 2(2x) - 3 = 4x^2 + 4x - 3。

然后,我们将方程f(g(h(x))) = 0转化为4x^2 + 4x - 3 = 0,利用求根公式可以得到x的解为x = (-1 ± √7) / 2。

因此,方程f(g(h(x))) = 0的解为x = (-1 + √7) / 2和x = (-1 - √7) / 2。

通过以上的解析,我们可以看出这道题目考察了函数的复合运算和求根的知识点。同时,解题过程中还需要运用一些代数运算的技巧,提高了同学们的思维灵活性和运算能力。

在备考期中考试时,同学们应该注重对各个知识点的理解和掌握。可以通过课堂学习、课后习题和模拟试题的练习,提高自己的解题能力和应对考试的信心。

希望同学们能够通过认真复习和准备,取得优异的成绩。祝大家考试顺利!

人教版高一数学期中试题及答案 篇二

数学是一门基础学科,也是一门需要不断练习和巩固的学科。为了帮助高一学生更好地理解和掌握数学知识,我们整理了人教版高一数学期中试题及答案,供同学们参考和学习。

本次期中试题涵盖了高一上册各个章节的重点内容,包括函数、数列、三角函数、解析几何等。试题设计灵活多样,旨在考察学生对知识点的理解和运用能力。

以下是一道试题的详细解析:

【试题】已知数列{an}的通项公式为an = 3n^2 + 2n - 1,求数列的前n项和Sn。

【解析】首先,我们可以根据数列的通项公式,求出前n项的和Sn。

根据数列的通项公式an = 3n^2 + 2n - 1,我们可以得到前n项的和Sn = a1 + a2 + ... + an。

将an的表达式代入Sn中,我们可以得到Sn = (3(1)^2 + 2(1) - 1) + (3(2)^2 + 2(2) - 1) + ... + (3n^2 + 2n - 1)。

对Sn进行化简,我们可以得到Sn = 3(1^2 + 2^2 + ... + n^2) + 2(1 + 2 + ... + n) - n。

根据数列的求和公式和平方和公式,我们可以进一步简化Sn的表达式,得到Sn = n(n + 1)(2n + 1)/2 + n(n + 1)/2 - n。

因此,数列的前n项和Sn的表达式为Sn = n(n + 1)(2n + 1)/2 + n(n + 1)/2 - n。

通过以上的解析,我们可以看出这道题目考察了数列的求和公式和分解因式的知识点。同学们在解题过程中需要灵活运用数学公式和技巧,提高自己的思维和计算能力。

在备考期中考试时,同学们应该注重对各个知识点的理解和记忆。可以通过课堂学习、课后习题和模拟试题的练习,加深对知识点的理解和掌握。

希望同学们能够通过认真复习和准备,取得优异的成绩。加油!

人教版高一数学期中试题及答案 篇三

【#高一# 导语】进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,®高一频道为大家整理了《人教版高一数学期中试题及答案》希望大家能谨记呦!!

  一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)

  1.不等式的解集为▲.

  2.直线:的倾斜角为▲.

  3.在相距千米的两点处测量目标,若,,则两点之间的距离是▲千米(结果保留根号).

  4.圆和圆的位置关系是▲.

  5.等比数列的公比为正数,已知,,则▲.

  6.已知圆上两点关于直线对称,则圆的半径为

  ▲.

  7.已知实数满足条件,则的值为▲.

  8.已知,,且,则▲.

  9.若数列满足:,(),则的通项公式为▲.

  10.已知函数,,则函数的值域为

  ▲.

  11.已知函数,,若且,则的最小值为▲.

  12.等比数列的公比,前项的和为.令,数列的前项和为,若对恒成立,则实数的最小值为▲.

  13.中,角A,B,C所对的边为.若,则的取值范围是

  ▲.

  14.实数成等差数列,过点作直线的垂线,垂足为.又已知点,则线段长的取值范围是▲.

  二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)

  15.(本题满分14分)

  已知的三个顶点的坐标为.

  (1)求边上的高所在直线的方程;

  (2)若直线与平行,且在轴上的截距比在轴上的截距大1,求直线与两条坐标轴

  围成的三角形的周长.

  16.(本题满分14分)

  在中,角所对的边分别为,且满足.

  (1)求角A的大小;

  (2)若,的面积,求的长.

  17.(本题满分15分)

  数列的前项和为,满足.等比数列满足:.

  (1)求证:数列为等差数列;

  (2)若,求.

  18.(本题满分15分)

  如图,是长方形海域,其中海里,海里.现有一架飞机在该海域失事,两艘海事搜救船在处同时出发,沿直线、向前联合搜索,且(其中、分别在边、上),搜索区域为平面四边形围成的海平面.设,搜索区域的面积为.

  (1)试建立与的关系式,并指出的取值范围;

  (2)求的值,并指出此时的值.

  19.(本题满分16分)

  已知圆和点.

  (1)过点M向圆O引切线,求切线的方程;

  (2)求以点M为圆心,且被直线截得的弦长为8的圆M的方程;

  (3)设P为(2)中圆M上任意一点,过点P向圆O引切线,切点为Q,试探究:平面内是否存在一定点R,使得为定值?若存在,请求出定点R的坐标,并指出相应的定值;若不存在,请说明理由.

  20.(本题满分16分)

  (1)公差大于0的等差数列的前项和为,的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项,.

  ①求数列的通项公式;

  ②令,若对一切,都有,求的取值范围;

  (2)是否存在各项都是正整数的无穷数列,使对一切都成立,若存在,请写出数列的一个通项公式;若不存在,请说明理由.

  扬州市2013—2014学年度第二学期期末调研测试试题

  高一数学参考答案2

014.6

  1.2.3.4.相交5.16.3

  7.118.9.10.11.312.13.

  14.

  15.解:(1),∴边上的高所在直线的斜率为…………3分

  又∵直线过点∴直线的方程为:,即…7分

  (2)设直线的方程为:,即…10分

  解得:∴直线的方程为:……………12分

  ∴直线过点三角形斜边长为

  ∴直线与坐标轴围成的直角三角形的周长为.…………14分

  注:设直线斜截式求解也可.

  16.解:(1)由正弦定理可得:,

  即;∵∴且不为0

  ∴∵∴……………7分

  (2)∵∴……………9分

  由余弦定理得:,……………11分

  又∵,∴,解得:………………14分

  17.解:(1)由已知得:,………………2分

  且时,

  经检验亦满足∴………………5分

  ∴为常数

  ∴为等差数列,且通项公式为………………7分

  (2)设等比数列的公比为,则,

  ∴,则,∴……………9分

  ①

  ②

  ①②得:

  …13分

  ………………15分

  18.解:(1)在中,,

  在中,,

  ∴…5分

  其中,解得:

  (注:观察图形的极端位置,计算出的范围也可得分.)

  ∴,………………8分

  (2)∵,

  ……………13分

  当且仅当时取等号,亦即时,

  ∵

  答:当时,有值.……………15分

  19.解:(1)若过点M的直线斜率不存在,直线方程为:,为圆O的切线;…………1分

  当切线l的斜率存在时,设直线方程为:,即,

  ∴圆心O到切线的距离为:,解得:

  ∴直线方程为:.

  综上,切线的方程为:或……………4分

  (2)点到直线的距离为:,

  又∵圆被直线截得的弦长为8∴……………7分

  ∴圆M的方程为:……………8分

  (3)假设存在定点R,使得为定值,设,,

  ∵点P在圆M上∴,则……………10分

  ∵PQ为圆O的切线∴∴,

  即

  整理得:(*)

  若使(*)对任意恒成立,则……………13分

  ∴,代入得:

  整理得:,解得:或∴或

  ∴存在定点R,此时为定值或定点R,此时为定值.

  ………………16分

  20.解:(1)①设等差数列的公差为.

  ∵∴∴

  ∵的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项

  ∴即,∴

  解得:或

  ∵∴∴,………4分

  ②∵∴∴∴,整理得:

  ∵∴………7分

  (2)假设存在各项都是正整数的无穷数列,使对一切都成立,则

  ∴

  ∴,……,,将个不等式叠乘得:

  ∴()………10分

  若,则∴当时,,即

  ∵∴,令,所以

  与矛盾.………13分

  若,取为的整数部分,则当时,

  ∴当时,,即

  ∵∴,令,所以

  与矛盾.

  ∴假设不成立,即不存在各项都是正整数的无穷数列,使对一切都成立.………16分

相关文章

文科生高考必备,高中历史时间轴汇总!(推荐3篇)

文科生高考必备,高中历史时间轴汇总! 【#高考# 导语】高中学习压力也越来越大,漫无目的、毫无计划的学习只会让大家身心疲惫,不利于学习成绩的提高,所以暑期制定学习计划很重要。?总结了高中历史时间轴汇总...
高中资料2018-02-09
文科生高考必备,高中历史时间轴汇总!(推荐3篇)

高中物理电学知识点(优秀4篇)

高中物理电学知识点 【#高三# 导语】电学是高中物理学习里的重要知识点,要学好高中物理,电学是至关重要的。下面就让?给大家分享几篇高中物理电学知识点篇吧,希望能对你有帮助!  高中物理电学知识点篇一 ...
高中资料2018-05-07
高中物理电学知识点(优秀4篇)

浙江省高中排行榜【实用3篇】

2021浙江省高中排行榜 【#教育# 导语】浙江的高中都有哪些?排名靠前的高中是哪几所?本文整理了浙江高中排名,欢迎阅读。更多相关内容请关注?教育频道! 【篇一】2021浙江省高中排行榜  杭州市第二...
高中资料2018-05-04
浙江省高中排行榜【实用3篇】

高一年级物理寒假作业答案【精简3篇】

高一年级物理寒假作业答案 【#高一# 导语】海不择细流,故能成其大:山不拒细壤,方能就其高。我们现在做的工作,也许过于平淡,也许鸡毛蒜皮。但这就是工作,是生活,是成就人事的不可缺少的基础。对于敬业者来...
高中资料2018-04-09
高一年级物理寒假作业答案【精简3篇】

高中生操行评语【实用3篇】

对工作认真负责,有领导、组织管理素质和能力,特别是在参加学校大型活动中表现突出。积极参加校业余党校学习,不断进...
高中资料2019-04-01
高中生操行评语【实用3篇】

高三冲刺誓词简短押韵大全(优秀4篇)

高三冲刺誓词简短押韵大全【8篇】 【#高考励志# 导语】高三会教给我们奋斗,每个人都有无尽的潜力,每一个人都有无穷的提升空间,不经过一年血战,也许我们永远发现不了自己身上蕴藏的能量。所以高三注定是精彩...
高中资料2017-02-01
高三冲刺誓词简短押韵大全(优秀4篇)