初中几何知识点总结(最新5篇)

初中几何知识点总结 篇一

几何学是数学的一个重要分支,也是初中数学教学中的一个重要内容。通过学习几何知识,可以培养学生的空间想象力和逻辑思维能力。下面我将对初中几何知识点进行总结。

一、图形的基本概念

1. 点:没有长度、宽度和高度,只有位置的概念。

2. 线段:由两个端点确定的线段,有固定的长度。

3. 射线:由一个端点和一个方向确定的线段,无限延伸。

4. 直线:没有端点,无限延伸的线段。

5. 角:由两条射线共同起点组成的图形,可以通过角度来度量。

二、图形的性质

1. 平行线和垂直线:平行线是在同一个平面上永不相交的线,垂直线是形成90度角的线。

2. 同位角和内错角:同位角是两条平行线被一条横切线所切割时,位于同一侧的对应角,内错角是两条平行线被一条横切线所切割时,位于两条平行线之间的对应角。

3. 三角形的内角和为180度:三角形是由三条线段连接而成的图形,三角形的内角和等于180度。

4. 直角三角形:有一个内角为90度的三角形。

5. 等腰三角形:有两条边相等的三角形。

6. 等边三角形:三条边都相等的三角形。

7. 相似三角形:具有相同形状但大小不同的三角形。

8. 平行四边形:具有两对平行边的四边形。

9. 矩形:具有四个直角的四边形。

10. 正方形:具有四个边相等且四个直角的四边形。

三、空间几何

1. 空间中的点、线和面:空间中的点没有长度、宽度和高度,线有长度但没有宽度和高度,面有长度和宽度但没有高度。

2. 空间中的几何体:包括球体、圆柱体、锥体、棱柱体等。

四、平面几何

1. 直线的性质:平面内的两条直线要么相交于一点,要么平行。

2. 平行线的判定:两条直线的斜率相等时,它们平行。

3. 直线与平面的相交关系:直线与平面要么相交于一点,要么平行于平面,要么包含于平面。

4. 角的性质:对顶角相等、同位角相等、内错角互补。

5. 三角形的性质:三角形的内角和为180度,外角等于与之相对的内角的补角。

以上是初中几何知识点的总结,希望对初中生学习几何学有所帮助。

初中几何知识点总结 篇二

初中几何知识点是数学中的重要内容,通过学习几何知识可以培养学生的空间想象力和逻辑思维能力。下面我将对初中几何知识点进行总结。

一、图形的基本概念

1. 点:没有长度、宽度和高度,只有位置的概念。

2. 线段:由两个端点确定的线段,有固定的长度。

3. 射线:由一个端点和一个方向确定的线段,无限延伸。

4. 直线:没有端点,无限延伸的线段。

5. 角:由两条射线共同起点组成的图形,可以通过角度来度量。

二、图形的性质

1. 平行线和垂直线:平行线是在同一个平面上永不相交的线,垂直线是形成90度角的线。

2. 同位角和内错角:同位角是两条平行线被一条横切线所切割时,位于同一侧的对应角,内错角是两条平行线被一条横切线所切割时,位于两条平行线之间的对应角。

3. 三角形的内角和为180度:三角形是由三条线段连接而成的图形,三角形的内角和等于180度。

4. 直角三角形:有一个内角为90度的三角形。

5. 等腰三角形:有两条边相等的三角形。

6. 等边三角形:三条边都相等的三角形。

7. 相似三角形:具有相同形状但大小不同的三角形。

8. 平行四边形:具有两对平行边的四边形。

9. 矩形:具有四个直角的四边形。

10. 正方形:具有四个边相等且四个直角的四边形。

三、空间几何

1. 空间中的点、线和面:空间中的点没有长度、宽度和高度,线有长度但没有宽度和高度,面有长度和宽度但没有高度。

2. 空间中的几何体:包括球体、圆柱体、锥体、棱柱体等。

四、平面几何

1. 直线的性质:平面内的两条直线要么相交于一点,要么平行。

2. 平行线的判定:两条直线的斜率相等时,它们平行。

3. 直线与平面的相交关系:直线与平面要么相交于一点,要么平行于平面,要么包含于平面。

4. 角的性质:对顶角相等、同位角相等、内错角互补。

5. 三角形的性质:三角形的内角和为180度,外角等于与之相对的内角的补角。

以上是初中几何知识点的总结,希望对初中生学习几何学有所帮助。

初中几何知识点总结 篇三

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的.第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  

5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直平分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180

  30、扇形面积公式:S扇形=n兀R^2/360=LR/2

  31、内公切线长=d-(R-r)外公切线长=d-(R+r)

  32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

初中几何知识点总结 篇四

  什么是几何图形:

  点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometricfigure)

  几何图形一般分为立体图形(solidfigure)和平面图形(planefigure)。

  我们所熟悉的几何图形:

  正方形

  a-----边长C=4aS=a2

  长方形

  a和b-----边长C=2(a+b)S=ab

  三角形

  a,b,c-----三边长h-----a边上的高s-----周长的一半A,B,C-----内角

  其中s=(a+b+c)/2S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)

  四边形

  d,D-----对角线长-----对角线夹角S=dD/2sin

  平行四边形

  a,b-----边长h-----a边的高-----两边夹角S=ah=absin

  菱形

  a-----边长-----夹角D-----长对角线长d-----短对角线长S=Dd/2=a2sin

  梯形

  a和b-----上、下底长h-----高m-----中位线长S=(a+b)h/2=mh

  圆

  r-----半径d-----直径C=d=2rS=r2=d2/4

  扇形

  r-----扇形半径a-----圆心角度数C=2r+2(a/360)S=r2(a/360)

  弓形

  l-----弧长b-----弦长h-----矢高r-----半径-----圆心角的度数

  S=r2/2(/180-sin)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=r2/360-b/2[r2-(b/2)2]1/2=r(l-b)/2+bh/22bh/3

  圆环

  R-----外圆半径r-----内圆半径D-----外圆直径d-----内圆直径S=(R2-r2)=(D2-d2)/4

初中几何知识点总结 篇五

  1过两点有且只有一条直线

  2两点之间线段最短

  3同角或等角的补角相等

  4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直

  6直线外一点与直线上各点连接的所有线段中,垂线段最短

  7平行公理经过直线外一点,有且只有一条直线与这条直线平行

  8如果两条直线都和第三条直线平行,这两条直线也互相平行

  9同位角相等,两直线平行

  10内错角相等,两直线平行

  11同旁内角互补,两直线平行

  12两直线平行,同位角相等

  13两直线平行,内错角相等

  14两直线平行,同旁内角互补

  15定理三角形两边的和大于第三边

  16推论三角形两边的差小于第三边

  17三角形内角和定理三角形三个内角的和等于180

  18推论1直角三角形的两个锐角互余

  19推论2三角形的一个外角等于和它不相邻的两个内角的和

  20推论3三角形的一个外角大于任何一个和它不相邻的内角

  21全等三角形的对应边、对应角相等

  22边角边公理有两边和它们的夹角对应相等的两个三角形全等

  23角边角公理有两角和它们的夹边对应相等的两个三角形全等

  24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等

  26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

  27定理1在角的平分线上的点到这个角的两边的距离相等

  28定理2到一个角的两边的距离相同的点,在这个角的平分线上

  29角的平分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等

  31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  32等腰三角形的顶角平分线、底边上的中线和高互相重合

  33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35推论1三个角都相等的三角形是等边三角形

  36推论2有一个角等于60的等腰三角形是等边三角形

  37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

  38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  42定理1关于某条直线对称的两个图形是全等形

  43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

  47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

  48定理四边形的内角和等于360

  49四边形的外角和等于360

  50多边形内角和定理n边形的内角的和等于(n-2)180

  51推论任意多边的外角和等于360

  52平行四边形性质定理1平行四边形的对角相等

  53平行四边形性质定理2平行四边形的对边相等

  54推论夹在两条平行线间的平行线段相等

  55平行四边形性质定理3平行四边形的对角线互相平分

  56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

  57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

  58平行四边形判定定理3对角线互相平分的四边形是平行四边形

  59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

  60矩形性质定理1矩形的四个角都是直角

  61矩形性质定理2矩形的对角线相等

  62矩形判定定理1有三个角是直角的四边形是矩形

  63矩形判定定理2对角线相等的平行四边形是矩形

  64菱形性质定理1菱形的四条边都相等

  65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

  66菱形面积=对角线乘积的一半,即S=(ab)2

  67菱形判定定理1四边都相等的四边形是菱形

  68菱形判定定理2对角线互相垂直的平行四边形是菱形

  69正方形性质定理1正方形的四个角都是直角,四条边都相等

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71定理1关于中心对称的两个图形是全等的

  72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  74等腰梯形性质定理等腰梯形在同一底上的两个角相等

  75等腰梯形的两条对角线相等

  76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  77对角线相等的梯形是等腰梯形

  78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

  81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

  82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh

  83(1)比例的基本性质如果a:b=c:d,那么ad=bc

  如果ad=bc,那么a:b=c:d

  84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d

  85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么

  (a+c+…+m)/(b+d+…+n)=a/b

  86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

  87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  94判定定理3三边对应成比例,两三角形相似(SSS)

  95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  97性质定理2相似三角形周长的比等于相似比

  98性质定理3相似三角形面积的比等于相似比的平方

  99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101圆是定点的距离等于定长的点的集合

  102圆的内部可以看作是圆心的距离小于半径的点的集合

  103圆的外部可以看作是圆心的距离大于半径的点的集合

  104同圆或等圆的半径相等

  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

  107到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  109定理不在同一直线上的三个点确定一条直线

  110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  112推论2圆的两条平行弦所夹的弧相等

  113圆是以圆心为对称中心的中心对称图形

  114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116定理一条弧所对的圆周角等于它所对的圆心角的一半

  117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径

  119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  121①直线L和⊙O相交d﹤r

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d﹥r

  122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

  123切线的性质定理圆的切线垂直于经过切点的半径

  124推论1经过圆心且垂直于切线的直线必经过切点

  125推论2经过切点且垂直于切线的直线必经过圆心

  126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  127圆的外切四边形的两组对边的和相等

  128弦切角定理弦切角等于它所夹的弧对的圆周角

  129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134如果两个圆相切,那么切点一定在连心线上

  135①两圆外离d﹥R+r②两圆外切d=R+r

  ③两圆相交R-r﹤d﹤R+r(R﹥r)

  ④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)

  136定理相交两圆的连心线垂直平分两圆的公共弦

  137定理把圆分成n(n3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  139正n边形的每个内角都等于(n-2)180/n

  140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  141正n边形的面积Sn=pnrn/2p表示正n边形的周长

  142正三角形面积3a/4a表示边长

  143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4

  144弧长计算公式:L=nR/180

  145扇形面积公式:S扇形=nR/360=LR/2

  146内公切线长=d-(R-r)外公切线长=d-(R+r)

相关文章

大学生活动课工作总结【优秀4篇】

大学生活动课工作总结篇一 学生社团活动已在校园内形成了相当规模和辐射力,成为学生课余开展学术、科研、文娱等活动的重要阵地。它的类型主要有知识学术型社团,社会服务型社团,文化娱乐型社团,研究创造型社团,...
工作总结2017-02-02
大学生活动课工作总结【优秀4篇】

新任公务员个人工作总结范文(优质3篇)

新任公务员个人工作总结范文 【#工作总结# 导语】工作总结是国家机关、社会团体、企事业单位、个人等通过对过去一个阶段社会实践活动进行全面回顾、检查、分析、评判,从理性认识的高度总结经验教训,以明确努力...
工作总结2017-04-01
新任公务员个人工作总结范文(优质3篇)

机关单位个人年终总结模板【精彩3篇】

机关单位个人年终总结模板 【#工作总结# 导语】总结是对自身社会实践进行回顾的产物,它以自身工作实践为材料。是回顾过去,对前一段时间里的工作进行反思,但目的还是为了做好下一阶段的工作。以下是?为大家准...
工作总结2013-04-08
机关单位个人年终总结模板【精彩3篇】

顶岗实习个人总结(通用3篇)

顶岗实习个人总结【5篇】 【#实习报告# 导语】实习能帮助大学生树立市场意识,端正就业态度。大学生通过实习才能认知社会中的优胜劣汰,培养竞争意识,才能在实习中了解用人单位的需求和要求。本篇文章是为您整...
工作总结2018-02-05
顶岗实习个人总结(通用3篇)

新教师跟岗培训总结【精彩5篇】

总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它可以帮助我们总结以往思想,发扬成绩,不如静下心来好好写写总结吧。总结怎么写才是正确的呢?以下是小编整理的...
工作总结2012-03-05
新教师跟岗培训总结【精彩5篇】

煤矿工人个人工作总结(优选6篇)

总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此我们需要回头归纳,写一份总...
工作总结2018-03-06
煤矿工人个人工作总结(优选6篇)