高一数学知识点总结归纳(精彩6篇)
高一数学知识点总结归纳 篇一
高一数学知识点总结归纳 篇一
在高一的数学学习中,我们接触到了许多重要的知识点。这些知识点不仅是我们后续学习的基础,也是我们理解和运用数学的关键。在本篇中,我将对高一数学的知识点进行总结归纳,以便于我们更好地复习和理解。
首先,我们学习了函数与方程。函数是数学中非常重要的概念,它描述了一种特定的映射关系。我们学习了线性函数、二次函数、指数函数、对数函数等不同类型的函数,并学会了如何根据函数的定义域、值域、图像等特点来确定函数的性质和变化规律。在方程的学习中,我们学习了一元一次方程、一元二次方程、一元高次方程等不同类型的方程,并学会了如何解方程、化简方程等解题方法。
其次,我们学习了数列与数学归纳法。数列是一系列有序的数按照一定规律排列的集合。我们学习了等差数列、等比数列、斐波那契数列等不同类型的数列,并学会了如何求解数列的通项公式、前n项和等问题。数学归纳法是一种证明数学命题的强有力方法,我们学会了如何使用数学归纳法证明一些数学命题的正确性。
然后,我们学习了平面向量。平面向量是数学中描述平面上有大小和方向的量的工具。我们学习了平面向量的定义、加法、数乘、内积等基本运算,以及平面向量的坐标表示和几何意义。通过学习平面向量,我们不仅能够描述平面上的几何关系,还能够解决一些与平面几何相关的问题。
最后,我们学习了三角函数。三角函数是研究三角形内角与边之间关系的数学工具。我们学习了正弦函数、余弦函数、正切函数等不同类型的三角函数,并学会了如何根据三角函数的定义和性质解决三角函数相关的问题。
综上所述,高一数学的知识点涉及了函数与方程、数列与数学归纳法、平面向量、三角函数等多个方面。这些知识点不仅是我们后续学习的基础,也是我们理解和运用数学的关键。希望通过本篇的总结归纳,我们能够更好地复习和理解这些重要的数学知识点。
高一数学知识点总结归纳 篇二
高一数学知识点总结归纳 篇二
在高一的数学学习中,我们接触到了许多重要的知识点。这些知识点涉及了代数、几何、概率等多个方面,是我们后续学习的基础。在本篇中,我将对高一数学的知识点进行总结归纳,以便于我们更好地复习和理解。
首先,我们学习了代数中的因式分解。因式分解是将一个多项式表达式表示为若干个因子的乘积的过程。我们学习了一些常见的因式分解方法,如公因式提取法、差平方公式、和差立方公式等。通过因式分解,我们能够简化表达式,从而更好地理解和运算。
其次,我们学习了几何中的相似与全等。相似与全等是研究几何形状之间关系的重要概念。我们学习了相似三角形的判定条件、相似比例、相似三角形的性质等。同时,我们还学习了全等三角形的判定条件、全等三角形的性质等。通过学习相似与全等,我们能够找到几何形状之间的对应关系,从而解决几何证明和计算问题。
然后,我们学习了概率中的事件与概率。事件是指一个特定结果或一组结果的集合,概率是指某一事件发生的可能性。我们学习了事件的定义、互斥事件、对立事件、条件概率等基本概念,并学会了如何计算事件的概率和进行概率统计。通过学习概率,我们能够更好地理解和运用概率在实际问题中的应用。
最后,我们学习了函数的应用。函数的应用是将函数的概念和性质应用到实际问题中的过程。我们学习了函数的最值问题、函数的模型问题、函数的图像分析等。通过函数的应用,我们能够将数学知识与实际问题相结合,解决实际问题中的数学难题。
综上所述,高一数学的知识点涉及了代数、几何、概率等多个方面。这些知识点不仅是我们后续学习的基础,也是我们理解和运用数学的关键。希望通过本篇的总结归纳,我们能够更好地复习和理解这些重要的数学知识点。
高一数学知识点总结归纳 篇三
【(一)、映射、函数、反函数】
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.
注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.
②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.
【(二)、函数的解析式与定义域】
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.
已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.
2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.
【(三)、函数的值域与最值】
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.
如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
【(四)、函数的奇偶性】
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的`等价形式:
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。
3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.
(6)奇偶性的推广
函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。
【(五)、函数的单调性】
1、单调函数
对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.
对于函数单调性的定义的理解,要注意以下三点:
(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.
(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.
(4)注意定义的两种等价形式:
设x1、x2∈[a,b],那么:
①在[a、b]上是增函数;
在[a、b]上是减函数.
②在[a、b]上是增函数.
在[a、b]上是减函数.
需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.
(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.
5、复合函数y=f[g(x)]的单调性
若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.
在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.
6、证明函数的单调性的方法
(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.
(2)设函数y=f(x)在某区间内可导.
如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.
【(六)、函数的图象】
函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.
求作图象的函数表达式
与f(x)的关系
由f(x)的图象需经过的变换
y=f(x)±b(b>0)
沿y轴向平移b个单位
y=f(x±a)(a>0)
沿x轴向平移a个单位
y=-f(x)
作关于x轴的对称图形
y=f(|x|)
右不动、左右关于y轴对称
y=|f(x)|
上不动、下沿x轴翻折
y=f-1(x)
作关于直线y=x的对称图形
y=f(ax)(a>0)
横坐标缩短到原来的,纵坐标不变
y=af(x)
纵坐标伸长到原来的|a|倍,横坐标不变
y=f(-x)
作关于y轴对称的图形
【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
①求证:f(0)=1;
②求证:y=f(x)是偶函数;
③若存在常数c,使求证对任意x∈R,有f(x+c)=-f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.
思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.
解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.
②令x=0,则有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),这说明f(x)为偶函数.
③分别用(c>0)替换x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).
两边应用中的结论,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
所以f(x)是周期函数,2c就是它的一个周期.
高一数学知识点总结归纳 篇四
1、作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
3、k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
高一数学知识点总结归纳 篇五
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学知识点总结归纳 篇六
一、集合及其表示
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:
非负整数集(即自然数集)N正整数集N_或N+
整数集Z有理数集Q实数集R
集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}
②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③语言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
强调:描述法表示集合应注意集合的代表元素
A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:该题有两组解。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。