高一数学必修1各章知识点总结【经典3篇】

篇一:高一数学必修1各章知识点总结

第一章:函数与方程

1. 函数的概念:函数是一种特殊的关系,每个自变量对应唯一的因变量。

2. 函数的表示方法:函数可以用表格、公式、图像等形式表示。

3. 方程的概念:方程是含有未知数的等式。

4. 一次函数:形如y=ax+b的函数,其中a和b为常数。

5. 二次函数:形如y=ax^2+bx+c的函数,其中a、b和c为常数。

6. 指数函数:形如y=a^x的函数,其中a为常数。

7. 对数函数:形如y=log_a(x)的函数,其中a为常数。

8. 一次函数的性质:一次函数的图像是一条直线,斜率表示函数的变化率,截距表示函数与y轴的交点。

9. 二次函数的性质:二次函数的图像是一条抛物线,顶点坐标表示函数的极值点,开口方向表示函数的增减性。

10. 指数函数的性质:指数函数的图像是一条递增或递减的曲线,底数大于1时递增,底数小于1时递减。

11. 对数函数的性质:对数函数的图像是一条递增或递减的曲线,底数大于1时递增,底数小于1时递减。

12. 方程解的判定:对于一次方程,有唯一解、无解或无穷多解。对于二次方程,有两个解、一个解或无解。

第二章:集合运算与命题逻辑

1. 集合的概念:集合是由元素组成的整体。

2. 集合的表示方法:集合可以用列举法、描述法或图形表示法表示。

3. 集合之间的关系:包含关系、相等关系、交集、并集、差集等。

4. 命题的概念:命题是可以判断真假的陈述句。

5. 命题的连接词:与、或、非等。

6. 命题的逆否、矛盾和对偶:逆命题是将命题的主语和谓语互换得到的命题,否命题是将命题的真值取反得到的命题,矛盾命题是与原命题的真值相反的命题,对偶命题是将原命题的主语和谓语都取反得到的命题。

7. 命题的等价和充分必要条件:等价命题是具有相同真值的命题,充分必要条件是指满足某个条件的必要条件和充分条件。

第三章:数列与数学归纳法

1. 数列的概念:数列是按照一定规律排列的一串数。

2. 等差数列:数列中相邻两项之差都相等。

3. 等比数列:数列中相邻两项之比都相等。

4. 通项公式:可以通过通项公式计算数列的任意一项。

5. 数列的性质:数列可以有界或无界,可以有限或无限。

6. 数学归纳法:数学归纳法是一种证明数学命题的方法,包含基本步骤和归纳假设。

第四章:不等式与绝对值

1. 不等式的概念:不等式是含有不等号的等式。

2. 一元一次不等式:形如ax+b>0或ax+b<0的不等式。

3. 一元一次绝对值不等式:形如|ax+b|>0或|ax+b|<0的不等式。

4. 二次不等式:形如ax^2+bx+c>0或ax^2+bx+c<0的不等式。

5. 绝对值的性质:绝对值的值永远非负,|a|>|b|等价于a>b或a<-b。

6. 不等式的解集:不等式的解集可以用区间表示。

第五章:平面几何初步

1. 平面几何的基本概念:点、线、面等。

2. 相交线与平行线:两条直线相交于一点时称为相交线,两条直线不相交时称为平行线。

3. 三角形与四边形:三角形是由三条线段组成的图形,四边形是由四条线段组成的图形。

4. 三角形的性质:三角形的内角和为180度,等腰三角形的两底角相等,等边三角形的三个内角都相等。

5. 直角三角形:直角三角形是一个内角为90度的三角形,满足勾股定理。

6. 三角形的相似:两个三角形的对应角相等,对应边成比例时称为相似三角形。

篇二:高一数学必修1各章知识点总结

第六章:解直线方程与解直线方程组

1. 直线的一般式方程:形如Ax+By+C=0的方程,其中A、B和C为常数。

2. 直线的斜截式方程:形如y=kx+b的方程,其中k为斜率,b为截距。

3. 直线的点斜式方程:形如y-y_1=k(x-x_1)的方程,其中k为斜率,(x_1, y_1)为直线上的一点。

4. 直线的两点式方程:形如(y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1)的方程,其中(x_1, y_1)和(x_2, y_2)为直线上的两点。

5. 直线方程的性质:直线的斜率表示了直线的倾斜程度,斜率相等的直线平行,斜率的倒数相等的直线垂直。

6. 直线方程组的解法:可以通过代入、消元或图解的方法求解直线方程组。

第七章:函数的图像与性质

1. 函数图像的性质:函数图像可以是一条曲线或多条线段组成的图形,可以通过函数的定义域、值域、单调性、奇偶性等来描述函数的性质。

2. 函数的平移:函数图像可以通过平移变换得到新的函数图像,平移的方向和距离由函数的参数决定。

3. 函数的伸缩:函数图像可以通过伸缩变换得到新的函数图像,伸缩的方式和比例由函数的参数决定。

4. 函数的反函数:如果函数f(x)和g(x)满足f(g(x))=x和g(f(x))=x,则f(x)和g(x)互为反函数。

5. 函数的复合:如果函数f(x)和g(x)定义在一定的区间上,则可以将g(x)的输出作为f(x)的输入,得到f(g(x))。

第八章:平面向量

1. 向量的概念:向量是有大小和方向的量,可以用箭头表示。

2. 向量的表示方法:向量可以用坐标表示,也可以用起点和终点的坐标表示。

3. 向量的运算:向量可以进行加法、减法和数乘运算。

4. 向量的模长:向量的模长表示了向量的大小,可以通过勾股定理计算。

5. 向量的方向角:向量的方向角表示了向量与x轴的夹角,可以通过三角函数计算。

6. 向量的共线与垂直:如果两个向量的方向相同或相反,则它们共线;如果两个向量的内积为0,则它们垂直。

第九章:立体几何初步

1. 空间几何的基本概念:点、直线、平面、立体等。

2. 空间几何的相交关系:两个立体可以相交、相离、重合或包含。

3. 空间几何的投影:一个点在平面上的垂直投影称为该点在该平面上的投影,一个点在直线上的垂直投影称为该点在该直线上的投影。

4. 空间几何的旋转:一个点绕着一个轴线旋转,可以得到该点的旋转体。

5. 空间几何的平移:一个物体沿着一个方向平行移动,可以得到该物体的平移体。

6. 空间几何的棱锥与棱台:棱锥是由一个多边形的底面和一个顶点连接而成的立体,棱台是由一个多边形的底面和一个平行于底面的多边形的顶面连接而成的立体。

通过对高一数学必修1各章知识点的总结,我们可以更好地理解和掌握数学的基础知识,为今后的学习打下坚实的基础。

高一数学必修1各章知识点总结 篇三


以下是©为大家整理的关于《高一数学必修1各章知识点总结》的文章,供大家学习参考!


第一章 集合与函数概念
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ ... } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
* 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c......}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合  例:{x|x2=-5}

二、集合间的基本关系
1."包含"关系-子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2."相等"关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} "元素相同则两集合相等"
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作AB(或BA)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
* 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作'A交B'),即AB={x|xA,且xB}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作'A并B'),即AB ={x|xA,或xB}). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作,即
CSA= 韦


示 性

质 AA=A
AΦ=Φ
AB=BA
ABA
ABB AA=A
AΦ=A
AB=BA
ABA
ABB (CuA) (CuB)
  = Cu (AB)
(CuA) (CuB)
  = Cu(AB)
A (CuA)=U
A (CuA)= Φ.
例题:
1.下列四组对象,能构成集合的是 ( )
 A某班所有高个子的学生 B的艺术家 C一切很大的书 D 倒数等于它自身的实数
2.集合{a,b,c }的真子集共有 个
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是 .
4.设集合A=,B=,若AB,则的取值范围是
5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
* 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作"f(对应关系):A(原象)B(象)"
对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1 注意:函数的单调性是函数的局部性质;
(2) 图象的特点
 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:"同增异减"
 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的(小)值
○2 利用图象求函数的(小)值
○3 利用函数单调性的判断函数的(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
例题:
  1.求下列函数的定义域:
⑴ ⑵
2.设函数的定义域为,则函数的定义域为_ _
3.若函数的定义域为,则函数的定义域是
4.函数 ,若,则=
5.求下列函数的值域:
⑴ ⑵
  (3) (4)
6.已知函数,求函数,的解析式
7.已知函数满足,则= 。
8.设是R上的奇函数,且当时,,则当时=
在R上的解析式为
9.求下列函数的单调区间:
⑴ ⑵ ⑶
10.判断函数的单调性并证明你的结论.
11.设函数判断它的奇偶性并且求证:.


第二章 基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.
* 负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:

* 0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1)· ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
a>1 0

注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或;
(2)若,则;取遍所有正数当且仅当;
(3)对于指数函数,总有;
二、对数函数
(一)对数
1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(- 底数,- 真数,- 对数式)
说明:○1 注意底数的限制,且;
○2 ;
○3 注意对数的书写格式.
两个重要对数:
○1 常用对数:以10为底的对数;
○2 自然对数:以无理数为底的对数的对数.
* 指数式与对数式的互化

幂值 真数

     = N= b

底数
指数 对数
(二)对数的运算性质
如果,且,,,那么:
○1 ·+;
○2 -;
○3 .
注意:换底公式
(,且;,且;).
利用换底公式推导下面的结论
(1);(2).
(二)对数函数
1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数.
○2 对数函数对底数的限制:,且.
2、对数函数的性质:
a>1 0(三)幂函数
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
例题:
1. 已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是       (  )
       

2.计算: ① ;②= ;= ;
③ =
3.函数y=log(2x2-3x+1)的递减区间为
4.若函数在区间上的值是最小值的3倍,则a=
5.已知,(1)求的定义域(2)求使的的取值范围

第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
○1 (代数法)求方程的实数根;
○2 (几何法)对

于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
 二次函数.
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
5.函数的模型

相关文章

事业单位年终个人总结【最新6篇】

时光匆匆,我们在忙碌中奔走,不经意间我们又到了岁末年终,经过过去一年的辛勤付出,我们一定积累了不少经验和教训,你的年终总结写好了吗?适时做总结才能让自己的努力更有方向哦。为了让您不再为年终总结头疼,以...
工作总结2013-03-01
事业单位年终个人总结【最新6篇】

学校卫生专项监督检查工作总结【优选6篇】

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以提升我们发现问题的能力,让我们一起来学习写总结吧。那么总结要注意有什么内容呢?下面是小编为大家整理的学校卫生专项监督检...
工作总结2011-04-03
学校卫生专项监督检查工作总结【优选6篇】

乡镇安全生产工作总结(精简6篇)

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,通过它可以正确认识以往学习和工作中的优缺点,不如我们来制定一份总结吧。总结你想好怎么写了吗?以下是小编精心整理的乡镇安全生产工作...
工作总结2015-02-06
乡镇安全生产工作总结(精简6篇)

教师新学期工作总结【优秀4篇】

随着时代的不断发展,人们对教师赋予了越来越高的角色期望。下面就随小编一起去阅读教师新学期工作总结,相信能带给大家启发。 第一篇:教师新学期工作总结 一学期过去了。回头看,围绕学校的工作计划和安排,自己...
工作总结2018-09-04
教师新学期工作总结【优秀4篇】

一年级班主任个人工作总结【精彩6篇】

总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,不如立即行动起来写一份总结吧。那么你知道总结...
工作总结2011-01-08
一年级班主任个人工作总结【精彩6篇】

大学毕业生供电公司的实习总结(精简3篇)

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,写总结有利于我们学习和工作能力的提高,为此我们要做好回顾,写好总结。但是却发现不知道该写些什么,下面是小编精心整理的大学毕业生供...
工作总结2014-03-05
大学毕业生供电公司的实习总结(精简3篇)