《简单的排列组合》教案【精简6篇】
《简单的排列组合》教案 篇一
排列组合是高中数学中的重要概念,也是让许多学生头疼的内容。为了帮助学生更好地理解和掌握排列组合的方法,我设计了一份简单的排列组合教案。
教学目标:
1. 理解排列和组合的概念。
2. 掌握计算排列和组合的方法。
3. 能够应用排列和组合的方法解决实际问题。
教学内容:
1. 排列的定义和计算方法。
2. 组合的定义和计算方法。
3. 实际问题的排列组合应用。
教学步骤:
Step 1:引入概念
通过举例介绍排列和组合的概念,引发学生对排列组合的兴趣,并解释排列和组合的区别。
Step 2:排列的计算
讲解排列的计算方法,并通过例题进行演示。引导学生注意排列中元素的顺序对结果的影响。
Step 3:组合的计算
讲解组合的计算方法,并通过例题进行演示。强调组合中元素的顺序对结果的无关性。
Step 4:实际问题的应用
提供一些实际问题,让学生运用排列组合的方法解决。帮助学生理解如何将实际问题转化为排列组合的计算。
Step 5:总结与反思
总结排列组合的概念和计算方法,让学生回顾所学内容。鼓励学生提出问题和疑惑,并进行解答。
评价方式:
1. 课堂参与度:学生是否积极参与讨论和解题。
2. 作业完成情况:学生是否能正确完成作业中的排列组合计算和实际问题应用。
3. 总结与反思:学生对排列组合的理解和掌握程度。
通过这份教案,学生可以系统地学习和掌握排列组合的方法,并能够灵活应用到实际问题中。同时,教师也可以根据学生的反馈和表现进行及时的调整和辅导,帮助学生更好地理解和掌握相关知识。
《简单的排列组合》教案 篇二
排列组合是高中数学中的重要内容,也是让很多学生感到困惑的一部分。为了帮助学生更好地理解和掌握排列组合的方法,我设计了一份简单的排列组合教案。
教学目标:
1. 理解排列和组合的概念。
2. 掌握计算排列和组合的方法。
3. 能够应用排列和组合的方法解决实际问题。
教学内容:
1. 排列的定义和计算方法。
2. 组合的定义和计算方法。
3. 实际问题的排列组合应用。
教学步骤:
Step 1:引入概念
通过实际例子引入排列和组合的概念,让学生了解到它们在日常生活中的应用,以增加学生的兴趣和参与度。
Step 2:排列的计算
讲解排列的定义和计算方法,通过示例演示如何计算排列。帮助学生理解排列中元素的顺序对结果的影响。
Step 3:组合的计算
讲解组合的定义和计算方法,通过示例演示如何计算组合。强调组合中元素的顺序对结果的无关性。
Step 4:实际问题的应用
提供一些实际问题,让学生应用排列组合的方法解决。帮助学生理解如何将实际问题转化为排列组合的计算。
Step 5:总结与反思
总结排列组合的概念和计算方法,让学生回顾所学内容。鼓励学生提出问题和疑惑,并进行解答。
评价方式:
1. 课堂参与度:学生是否积极参与讨论和解题。
2. 作业完成情况:学生是否能正确完成作业中的排列组合计算和实际问题应用。
3. 总结与反思:学生对排列组合的理解和掌握程度。
通过这份教案,学生可以系统地学习和掌握排列组合的方法,并能够灵活应用到实际问题中。同时,教师也可以根据学生的反馈和表现进行及时的调整和辅导,帮助学生更好地理解和掌握相关知识。
《简单的排列组合》教案 篇三
【背景】
在日常生活中,有很多需要用排列组合解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。
【教材分析】
“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。
【教学目标】
1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;
2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;
3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
【教学重点】
经历探索简单事物排列与组合规律的过程
【教学难点】
初步理解简单事物排列与组合的不同
【教学准备】
多媒体、数字卡片。
【教学方法】
观察法、动手操作法、合作探究法等。
【课前预习】
预习数学书99页,思考以下问题:
1、用1、2两个数字能摆出哪些两位数?
2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。
3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。
【教学准备】
PPT
【教学过程】
……
一、以游戏形式引入新课
师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢?
师:谁告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数)
生:12、21
师:打开密码盒
师:打开了密码锁,进入数学广角乐园。一关一关的进行闯关活动。第一关:1、2、3能摆出哪些两位数?第二关:如果3人见面,每两个人握一次手,一共要握几次手?
(设计意图:不拘泥于教材,创设学生感兴趣的游戏引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)
二、游戏闯关活动对比
师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
结论:摆数与顺序有关,握手与顺序无关。
摆数可以交换位置,而握手交换位置没用。
(设计意图:以相同数量进行对比,为什么数字要比握手多一半呢?引发学生知识冲突从而引发思考,激发学生的求知欲。)
三、应用拓展,深化探究
1、数字宫
师:第三关现在我们去那里玩呢?我们一起看看!
从0、4、6中选择两个数字排成两位数,有几种排法?
总结:为什么和上面发现的结果不一样呢?问题出在谁的身上呢?(0)
为什么?(0不能做一个数的第一位)
2、选择线路
师:同学们,米老鼠带我们欣赏完数学广角,准备回家了,有几条路供它选择?演示:
问题:数学城堡到家里,到底有几种走法呢?
(1)分组讨论。
(2)学生汇报,教师演示。
(3)板书:A——C A——D A——E B——C B——D B——E
(设计意图:题目层次性强,与生活联系密切。不同的人在数学上得到不同的发展,人人学有价值的数学。)
【反思】
本节课的设计做到了以下几个亮点突破:
1、创设游戏情境,激发学生探究的兴趣。
整课节始终用创设的游戏情境吸引学生主动参与激发积极性。我设计了:门上的锁密码是多少?本节课通过闯关游戏创设“数字排列”中有趣的数字排列,激发了学生解决问题的探究欲望。又如通过创设“握手活动”与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题的兴趣。
2、课堂中始终体现以学生为主体、合作学习。
“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选则合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作;在解决重难点时,我选择了学生六人小组的合作探究。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并深入小组中恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。
3、让学生在丰富多彩的教学活动中领悟新知。
本课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。
《简单的排列组合》教案 篇四
教学目标:
1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。使学生在数学活动中养成与人合作的良好习惯。
教学过程:
一、创设增境,激发兴趣。
师:今天我们要去"数学广角乐园"游玩,你们想去吗?
二、操作探究,学习新知。
<一>组合问题
l、看一看,说一说
师:那我们先在家里挑选穿上漂亮的衣服吧。(课件出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。(要求:小组长拿出学具衣服图片、展示板)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法? (4种)
第二种方案(按下装搭配上装)有几种穿法? (4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>排列问题
师:数学广角乐园到了,不过进门之前我们必须找到开门密码。(课件出示课件密码门)
密码是由1、2 、3 组成的两位数.
(1)小组讨论摆出不同的两位数,并记下结果。
(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)
(3)生生相互评价。方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位数.
师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.
三、课堂实践,巩固新知。
1、乒乓球赛场次安排。
师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)
(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?
(2)学生独立思考.
(3)指名学生汇报.规
2、路线选择。(课件展示游玩景点图)
师:我们去公园看看吧。途中要经过游戏乐园。
(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)
从活动乐园到时公园到底有几种不同的走法?
(2)学生独立思索后小组交流 。
(3)全班同学互相交流 。
3、照像活动。
师:我们来到公园,这儿的景色真不错,大家照几张像吧.
师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。
(1)小组活动,老师参与小组活动 。
(2)各小组展示记录方案 。
(3)师生共同评价 。
4、欣赏照片.
师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)
四、总结
今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?
《简单的排列组合》教案 篇五
【背景】
为了进一步提高堂效率,提升学生学习力,逐步落实数学堂与“学习力”相结合的自学为主堂教学模式,提升青年教师的整体素质,进步培养青年教师良好的教学能力。我们二年级数学组于XX年10月开展了全员赛活动,并取得了良好效果。本篇教案集授教师努力及组内教师智慧,较能体现学校的主流教学模式,是一篇优秀的案例。
【教材简析】
本节的内容是数学二年级上册数学广角例1简单的排列与组合。排列和组合的思想方法应用得很广泛,是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透这一数学思想方法时就做了一些探索,把它通过学生日常生活中最简单的事例呈现出来。
教材的例1通过2个卡片的`排列顺序不同,表示不同的两位数,属于排列知识,而简单的排列组合对二年级学生来说都早有不同层次的接触,如用1、2两个数字卡片来排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,也有不少学生通过平时的益智游戏都能做到不重复、不遗漏地排列。针对这些实际情况,在设计本节时,根据学生的年龄特点处理了教材。整堂坚持从低年级儿童的实际与认知出发,以“感受生活化的数学”和“体验数学的生活化”这一教学理念,结合实践操作活动,让学生在活动中学习数学,体验数学。
【教学目标】
1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;
2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;
3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
【教学重点】
经历探索简单事物排列与组合规律的过程
【教学难点】
初步理解简单事物排列与组合的不同
【教学准备】
多媒体、数字卡片。有关北京景色的、生字词卡。
【课前预习】
预习数学书99页,思考以下问题
1、用1、2两个数字能摆出哪些两位数?
2、用
1、2、3这3个数字能摆出哪些两位数?可以动手写一写。
3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。
【教学过程】
1、合作探究排列
师:同学们,请看这就是数学广角乐园,数学广角里给我们准备了这么多的闯关游戏,敢不敢试一试?(不怕)你们真是勇敢的好孩子。咱们先来创第一关。
(出示:用数字卡片1、2、3可以摆成几个不同的两位数呢?)
师:第一关,用数字卡片1、2、3可以摆成几个不同的两位数呢?
生汇报。对不对呢?我们来验证一下,听清要求。
同桌合作,一人摆数字卡片,一人把摆好的数记录下来,写好马上做好,比比哪桌合作得又好又快。
实际操作,教师巡视。
板演反馈,同时汇报不同的摆法和想法。
无顺序的汇报→正确的汇报→比较方法→学生说方法→师板书→起名称
师:请把你写出的两位数读出来(无序→正确,师板书,),比较一下谁的更全面一些?(提问其他的答案),为什么XX同学没有完全摆对而这名同学却摆得这么准呢?他有什么诀窍吗?(生边回答师边数字板演示,并进行板书)
师:谁能给这个方法起一个名字呢?
谁还有其它的方法要介绍给大家?
象这样因为数字的位置不同而拼组出了不同的两位数,这样的问题在数学上就叫排列。
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。顺利过关,进入下一关
2、感知组合
师:同学们,第二关问题是:如果三个人握手,每两个人握一次,三人一共要握多少次呢?
师:大家看,我在和他握手,他也在和我握手,不管我们的位置如何变化只要我们的手不松开我们两个人就是只握了一次手。
那三个人握手到底要握几次?以小组为单位,组长记录次数,其他三人演示,看看每两个人握一次手,三个人一共要握手多少次?
师:两个人握一次手,三人一共要握3次手。
(板书展示握手过程)
3、对比思考——追寻本质
师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
结论:摆数与顺序有关,握手与顺序无关。
摆数可以交换位置,而握手交换位置没用。
【反思】
本节体现了两个特色
1、预设有效问题是进行数学思维的关键
“思”源于“问题”,要通过“问题解决”使儿童获得知识、方法、能力及思想上的全面发展,首先要有一个好“问题”。因为学生数学思考的形成就是借助于对这些“问题”的思考及通过对这些问题的解决过程之中。在这节中,在每一个活动之前,教师都为学生创设了一个感兴趣的,具有现实意义的问题:“用1、2、3这三个数字,可以编出几个两位数呢?”、“三个人每两人互相握一次手,一共要握几次手?”只有面对这样的好“问题”,学生才能自觉的全身心地投入到问题解决之中,才能通过对这些问题的分析、比较,对这些规律的观察、感悟,对所得结论的描述、解释。而这一过程又正是学生形成数学思考的过程。
2、逐步感悟有序思维的必要性
有序思维在日常生活中有着广泛的用途,让学生通过学习逐步感悟到有序思维的必要性就显得犹为重要了。用1、2、3这三个数字,可以编出几个两位数,让学生非常自然地、主动地进行猜数,并产生怎样思考才能既不重复也不遗漏的问题,激发学生的学习兴趣。接着,通过学生独立思考“用1、2、3写(摆)两位数”引导学生根据自己的实际情况选择不同的方法探究新知,尊重学生的个性差异,使每个学生在原有基础上得到完全、自由的发展,初步感悟有序的写(摆);交流讨论,再说一说你是怎么写(摆)的,它好在哪里?等问题,促使学生去观察、去发现,促进了学生对其隐藏着的数学思想的领悟、认识;最后通过全班交流,引导学生得到了两种基本的排序方法(列表法和图示法),进一步体验到按一定的顺序思考的价值并初步掌握方法。最后,抓住鼓励表扬的握手游戏这一契机,突破教学的难点(初步理解简单事物排列与组合的不同)让学生通过猜一猜、演一演等形式,使他们对其规律进行本质的探究,在活动中体验感受排列与组合的不同。这里,学生经历了猜想、验证、反思等一系列探索活动,体会到思之要有“据”、思之要有“理”、思之要有“序”,这不仅是让学生在活动中学会思考,更是让学生在探究活动中学会科学的探究方法。
这节注重了排列组合的有序性,而对排列组合的合理性诠释得还不够到位。还有些堂上的动态生成的资源捕捉利用不够及时到位等等。我想这在以后教学中还应多反思,多注意的。
《简单的排列组合》教案 篇六
教学内容:
简单的排列组合
教学目标:
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
教学过程:
1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。
2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。
3、出示练习二十五第3题。
学生看题后,四人小组讨论出有多少种求组合数的方法。
4、学生汇报。
(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。
(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
(1)练习二十五第7题。
通过活动的方式让学生不重不漏地把所有取钱的情况写出来。
(2)练习二十五第9题。
用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。
教学反思: