方程的意义教学设计【优选6篇】
方程的意义教学设计 篇一
方程的意义教学设计
引言:
方程是数学中非常重要的内容,它不仅在数学中有着广泛的应用,还能培养学生的逻辑思维和问题解决能力。在教学中,我们应该注重培养学生对方程的理解和运用能力,帮助他们将数学知识与实际问题相结合,从而增强他们的学习兴趣和学习动力。本文将从三个方面介绍方程的意义教学设计。
一、培养学生的逻辑思维能力
在教学中,我们可以通过引导学生分析问题,提出假设并解决问题的过程,培养他们的逻辑思维能力。例如,我们可以给学生一个实际问题,让他们提出一个方程来表示,并通过解方程来得到问题的解。通过这个过程,学生不仅可以学会运用方程解决问题,还能锻炼他们的逻辑思维能力。
二、增强学生的问题解决能力
方程是解决实际问题的一种数学工具,通过教学设计,我们可以帮助学生掌握如何将实际问题转化为方程,并通过解方程来解决问题。例如,我们可以给学生一个实际问题,让他们自己提出一个方程,并通过解方程来解决问题。通过这个过程,学生可以培养他们的问题解决能力,并将数学知识应用到实际生活中。
三、提高学生的数学学习兴趣和学习动力
在教学中,我们可以通过生动有趣的教学设计,激发学生对方程的兴趣。例如,我们可以给学生一些有趣的问题,让他们通过解方程来解决。通过这个过程,学生可以发现方程在解决问题中的重要性,从而增强他们的学习兴趣和学习动力。
结论:
方程的意义教学设计不仅能够培养学生的逻辑思维和问题解决能力,还能提高他们的数学学习兴趣和学习动力。在教学中,我们应该注重培养学生对方程的理解和运用能力,帮助他们将数学知识与实际问题相结合,从而增强他们的学习兴趣和学习动力。
方程的意义教学设计 篇二
方程的意义教学设计
引言:
方程是数学中非常重要的内容,它在数学中有着广泛的应用,并且能够培养学生的逻辑思维和问题解决能力。在教学中,我们应该注重培养学生对方程的理解和运用能力,帮助他们将数学知识与实际问题相结合,从而增强他们的学习兴趣和学习动力。本文将从三个方面介绍方程的意义教学设计。
一、培养学生的逻辑思维能力
在教学中,我们可以通过引导学生解决实际问题的过程,培养他们的逻辑思维能力。例如,我们可以给学生一个实际问题,让他们自己提出一个方程,并通过解方程来解决问题。通过这个过程,学生不仅可以学会运用方程解决问题,还能锻炼他们的逻辑思维能力。
二、增强学生的问题解决能力
方程是解决实际问题的一种数学工具,通过教学设计,我们可以帮助学生掌握如何将实际问题转化为方程,并通过解方程来解决问题。例如,我们可以给学生一个实际问题,让他们通过解方程来解决。通过这个过程,学生可以培养他们的问题解决能力,并将数学知识应用到实际生活中。
三、提高学生的数学学习兴趣和学习动力
在教学中,我们可以通过生动有趣的教学设计,激发学生对方程的兴趣。例如,我们可以给学生一些有趣的问题,让他们通过解方程来解决。通过这个过程,学生可以发现方程在解决问题中的重要性,从而增强他们的学习兴趣和学习动力。
结论:
方程的意义教学设计不仅能够培养学生的逻辑思维和问题解决能力,还能提高他们的数学学习兴趣和学习动力。在教学中,我们应该注重培养学生对方程的理解和运用能力,帮助他们将数学知识与实际问题相结合,从而增强他们的学习兴趣和学习动力。
方程的意义教学设计 篇三
教学目标:
(1)使学生理解方程概念,感受方程思想。
(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
教学过程:
一、创设情景,抽象数学模式。
1、出示实物天平。
(实物天平比较小,用屏幕上的天平来模拟实验。)
2、两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?
(说明两边的重量可能有三种不同的关系。)
用式子描述重量之间的相等关系。
3、一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?
用式子表示两队比分的关系。
红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了 X 分,请你猜一猜,两队的情况会怎样呢?
用式子来表示比分的三种关系。
4、创设四个情景。
(1)每个情景中数量之间有什么关系?
(2)你能用关系式清晰地来描述吗?
二、引导分类,概括方程概念。
刚才我们对情景的描述得到了很多式子。
200+200=400 1823 18+X=23
280>100 120<4X 25+X=70 22Y+720=1050
1、学生尝试第一次分类。
可能有几种不同的分法。
(1) 看是否是等式。
(2) 看是否含有未知数。
……
2、学生尝试第二次分类。
得到四组不同的式子。
3、描述每一组的特征。
4、引导概括方程概念。
含有未知数的等式叫方程。
三、抓等量关系,体会方程本质。
1、演示动态平衡。有等量关系,能用方程表示
2、出示情景(没有等量关系,不能用方程表示。)
出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)
3、通过今天这节课,你学到了什么呢?
四、联系实际,应用与拓展。
1、周老师从无锡到徐州来上课。
(1)线段图。
(2)我乘火车从无锡站开出,每小时行 X 千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。
(3)到了徐州站,我买了3枝圆珠笔,每枝 X 元,付出20元,找回2元。
2、情景图。
本届奥运会上,中国台北队获得了 X 枚金牌,中国队获得了32枚,日本队获得 Y 枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”
3、开放题。
小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多? (用方程表示)
“方程的意义”教学设计的说明
在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。
整体的把握:
数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:
形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。
发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。
直观具体层面——举出正例或反例。
直觉层面——一种数学的意识、一种方程的感觉。
这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)
目标的把握:
经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。
渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。
过程的把握:
统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。
本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。
经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
方程的意义教学设计 篇四
一,教学内容
"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义
二,教材分析
方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.
三,教学目标
根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:
1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.
2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.
3, 让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.
四,教学重点,难点
教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.
教学难点:正确寻找等量关系列方程.
五,教学设想
概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.
六,教学准备
:课件,天平,实物若干等
七,教学过程:
课前准备:利用学具(简易天平)感受天平平衡的原理.
教学过程
学生活动
设计意图
一,创设情景,建立表象
1.认识天平.
2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么
(天平两边所放物体质量相等)
3.用式子表示所观察到的情景:
情景一:导入等式
(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝
300+150=450
(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:从不平衡到平衡引出不等式与含有未知数的等式
(1)
在杯子里面加入一些水,天平会有什么变化
要使天平平衡,可以怎么做
情景三:看图列等式
(1)
x+y=250
(2)
536+a=600
直观认识天平
回忆课前操作实况理解平衡原理
观察情景图,先用语言描述天平所处的状态,再用式子表示
先观察天平从不平衡到平衡这一组动态的操作,再用语言进行描述进而用数学符号进行概括从中感悟不等式与等式的区别,同时进一步加深对等式的理解
观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义.
通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).
方程的意义教学设计 篇五
教学目标
1、结合操作活动使学生初步理解方程的意义。
2、会用含有未知数的等式表示等量关系。
3、感受方程与现实生活的密切联系,体验数学活动的探索性
教学重点
:结合具体情境理解方程的意义,能用方程表示简单的等量关系。 教学难点:能用方程表示简单的等量关系。
教学过程
活动一:
谈话导入:同学们,你们知道我们国家的国宝是什么吗?对,大熊猫是我国一级保护动物,更是我国外交活动中表示友好的形象大使。动物园的叔叔正在科学的喂养大熊猫呢!
出示信息窗一,引导学生观察情境图,阅读文字信息。
学生观察主题图,认真阅读信息。
活动二:借助天平理解等式。
分组实验:①天平左盘放一个10克的砝码,右盘放一个20克的砝码,天平不平衡,可以用式子10<20表示;②在左盘再放上1个10克的砝码,天平平衡了,用等式10克+10克=20克表示。
分组实验:天平左盘放一个20克的砝码和一个不知重量的方木块,右盘放一个50克的砝码,一成天平平衡,用等式20+=50表示。
小结:等式表示相等的关系。
活动三:概括方程的意义。
师:观察黑板上的三个式子:+20=70、2=150、3+10=100,你有什么发现?
学生自由谈想法??
小结:像+20=70、2=150、3+10=100这样含有未知数的等式,叫做方程。
活动四:方程与等式的关系
想一想,等式和方程之间有什么关系?
小组讨论
小结:方程的范围比较小,等式的范围比较大,方程只是等式的一部分。 活动七:自主练习
1、判断哪些式子是方程。
师:你认为一个式子是方程必须具备哪些条件?
小结:同时具备“含有未知数”、“相等的式子”这两个条件才是方程。 学生独立完成自主练习第1题。(引导学生在判断对错的同时,说出判断的依据。)
2、看图列方程。完成自主练习第2题。要求学生先找出图中数量间的相等关系,再独立列出方程。(集体交流)
3、完成自主练习第3题。(让学生独立写出等量关系式并列出方程,再进行交流。)
活动五:全课总结:
引导学生谈谈这节课有什么收获?
学生谈收获,并找出不懂的地方。
方程的意义教学设计 篇六
教材分析:
方程是含有未知数的等式,因此我设计教学方程的概念是从等式引入的,教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,让学生说出能用一个什么样的式子表示出来,让学生知道方程源于生活。通过引导学生观察一组图形的变化,逐步引出等式,从而由不等到相等,引出含有未知数的等式称为方程。
在此基础上,一方面让学生列举像方程这样的式子,并予以区别,强化方程的意义。另一方面通过三位小朋友写方程,让学生初步感知方程的多样性。
“做一做”让学生判断哪些是方程,使学生进一步巩固方程的意义。在这儿,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判断就可,不必在概念上过分纠缠,更不必拓展太多,以免加重学生负担。
“你知道吗?”的阅读资料简要介绍了有关方程的一些史料。让学生只需感知,不作记忆的要求。
学情分析:
五年级的学生对方程这块内容是第一次正式接触,虽然在这学期开始的作业本中有几次方程的题出现,但对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的`基础开始,从他们知道的东西,如跷跷板到天平,然后再过渡到方程。在教学过程中还要注意把握学生的接受能力,这节课只要学生能理解和判断,不能过分纠缠概念上问题和其他课外的知识,如果要学生了解太多会加重学生的负担,反而使学生因难而失去学习的兴趣。基础不太好、理解能力不太强的学生在学习过程中可能会遇到对新的内容不容易接受,特别是概念课,所以让学生课前预习会对这些学生有一定的帮助。在课堂上多让学生看形象的事物,从而理解概念,帮助学生更好的学习。
教学目标:
1. 通过天平演示,使学生初步理解方程的意义;
2. 使学生能够判断一个式子是不是方程并能解决简单的实际问题;
3. 培养学生观察、描述、分类、抽象、概括、应用等能力。
重点难点:判断一个式子是不是方程;初步理解方程的意义。
课前准备: 课件、天平、带有磁铁的卡纸、彩色记号笔。
教学过程: 修改意见
一、复习旧知,激趣导入
同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有408位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:218+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏着的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!
二、创设情景,导入新课
1.同学们,你们去过公园了吗?玩过翘翘板了吗,如果你和爸爸一起玩,会出现什么样的结果?(翘翘板摇晃不平衡)
师:怎样才能保持两边平衡呢?(让妈妈也加入)
小结;当两边重量差不多的时候,跷跷板基本保持平衡,就能很好的玩游戏了。
三、探究新知
1、师:在数学中与翘翘板原理一样的工具,你知道是什么吗?(生答:天平)
2、介绍:(出示天平)这就是我们这节课要用到的称量工具——天平。天平是由天平秤和砝码组成的。砝码有不同,越大就越重。把要称量的物体放在左边的托盘,右边的托盘放上相应的砝码,当天平平衡、指针指在正中央,说明这个物体的重量就是砝码的重量。
2.课件出示第二幅图:一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。
师:请看这幅图。
思考:看了这幅图你知道了什么?生答。
师:对,我们找到了这样一个等量关系,(卡片出示:1个空杯子=100g)
3. 课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。
师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。
问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)
问:如果水重x克,你能用一个式子表示天平两边的结果吗?
生回答后,课件、卡片出示:100+x>100
4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。
师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。
师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)
师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。
学生回答后课件、卡片出示: 100+x<300
问:观察列出的两个式子,有什么共同的地方?
这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)
问:能再举几个这样的不等式吗?
(学生列出不等式,教师选择两个写在卡片上贴于黑板。)
5. 课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。
师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。
(学生看到都说:平衡了)
问:谁来表示这个式子?
学生回答后课件、卡片出示:100+x=250
问:为什么用“=”呢?(平衡就是相等了)
问:哦,那这个式子与刚才两个不等式比较最大不同是什么?(生能答,不能教师引导:这个式子中间是等号,叫等式。板书:等式)
问:能再举几个这样的等式吗?
(生举例,教师选择三个写在贴于黑板的卡片上。)
这时黑板上的卡片有:
300+200=500 100+x<300
100+x>100 100+x=250
80+x>100 100+50<300
5×a=40 x+200 x+x=8
三、探究交流,抽象概括
1.分类、建构概念
让全班观察黑板上的8个算式,根据它们的特点,小组讨论,试将他它们分类并说明理由。
学生讨论。
问:谁来说说你们是按照什么标准分的?
(1)如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的重点说,其余的口头交流。
(2)让按“是否含有未知数”分的学生把式子分成两堆。
问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(含有未知数)那这几个呢?(没有未知数)
问:你能把这一种(指含有未知数)再分成两类吗?怎么分?指名板演。
(或者让按“是否是等式”分的学生把式子分成两堆。
问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(是等式)那这几个呢?(不是等式)
问:你能把这一种(指是等式)再分成两类吗?怎么分?指名板演。
根据学生的思路来讲。)
问:你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)
师:像这样,含有未知数的等式我们把它叫做方程。(板书:像这样含有未知数的等式,叫做方程。)一起读一遍。(学生齐读)这也是我们今天这堂课要学习的内容。(板书课题:方程的意义)
2.理解、巩固概念
师:自己理解一下方程的概念,方程必须具备哪几个条件?(未知数和等式)
师:你会自己写出一些方程吗?(生答:会。)请四个学生到黑板上板演写两个,其他同学在作业纸上写。
写好后,请同学们用手势一起判断对错,说说你是怎么判断的。同桌互改。
小结:判断一个式子是不是方程,一看是不是等式,二看有没有未知数。
(出示课件)问:老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)
6+x=14 3+x 50÷2=25 ab=18
6+x>23 51÷a=17 x+y=18
问:通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用x表示。
(2)未知数不一定只有一个。
四、巩固提高,形成技能
1.判断
下边哪些式子是方程?(课本54页“做一做”)
35+65=100 x -14>72
y+24 5x+32=47
28<16+14 6(a+2)=42
2.你知道吗?
课件动态显示关于方程的小知识。
你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
3.练练思维
孟老师今年的年龄加上7就是30岁,你知道老师今年几岁了吗?
某同学今年的年龄的2倍是22岁,他今年几岁?
4.提高智慧
小刚集邮共360张,小红集邮共400张,怎么才能使两人的邮票张数一样多?
5.数学游戏:小博士用他的手遮住了所写的内容。他想让你们猜猜他写的式子是不是方程。(用多媒体设计出手的形状盖在方格上)
(1)□ +x > 40 (不是)
(2)x÷□=80 (是)
(3)3×□=24 (不一定)
让学生判断并说明理由。
(第三题:如果方格中填的是未知数这个式子就是方程,如果填的是8就不是方程,填其它的数就是一个错误的算式。)
五、总结提升。
回想一下刚才我们上课开始写的那个表示我们全校师生总人数的式子,现在老师告诉你一共有432人,你能得到怎样一个方程并知道老师有多少人吗?(24人)好聪明!这是我们下节课将要学习的内容,希望同学们也能像今天一样积极动脑,脚踏实地地走好每一步,去解开更多生活中的未知数,去迎接更多新的挑战!
作业设计:
1.作业本25页。
2.口算一页。
板书设计:
方程的意义
其他式子
含有未知数的等式
3077+ x
等式
不等式
像这样含有未知数的等式,叫做方程。