最新初三数学上册的知识点总结(精选3篇)

最新初三数学上册的知识点总结 篇一

初三数学上册是初中阶段数学学习的重要阶段,本篇文章将对最新初三数学上册的知识点进行总结。

1. 有理数与整式

初三数学上册的第一个重点是有理数与整式。学生需要掌握有理数的基本概念,如正数、负数、零等,并能够进行有理数的四则运算。此外,学生还需要学习整式的概念和运算规则,包括多项式的加减乘除以及整式的化简等。

2. 一元一次方程与一元一次不等式

一元一次方程与一元一次不等式是初三数学上册的第二个重点。学生需要学习如何解一元一次方程和不等式,并能够应用到实际问题中。此外,学生还需要掌握方程与不等式的图解法和代入法等解题方法。

3. 平面直角坐标系与二元一次方程组

平面直角坐标系与二元一次方程组是初三数学上册的第三个重点。学生需要掌握平面直角坐标系的基本概念和性质,以及如何表示点的坐标和直线的方程。此外,学生还需要学习如何解二元一次方程组,并能够应用到实际问题中。

4. 几何图形的相似与全等

几何图形的相似与全等是初三数学上册的第四个重点。学生需要学习相似与全等的基本概念和判定条件,以及相似比和全等的性质。此外,学生还需要学习如何应用相似与全等的性质解决实际问题。

5. 圆的性质与圆周角

圆的性质与圆周角是初三数学上册的第五个重点。学生需要掌握圆的基本概念和性质,如圆周角、切线、弦等,并能够应用到实际问题中。此外,学生还需要学习如何计算圆的面积和周长。

总的来说,最新初三数学上册的知识点涵盖了有理数与整式、一元一次方程与一元一次不等式、平面直角坐标系与二元一次方程组、几何图形的相似与全等以及圆的性质与圆周角等内容。通过系统地学习和掌握这些知识点,学生将能够在数学学习中取得更好的成绩。

最新初三数学上册的知识点总结 篇二

初三数学上册是初中阶段数学学习的重要阶段,本篇文章将对最新初三数学上册的知识点进行总结。

1. 数与式

初三数学上册的第一个重点是数与式。学生需要掌握数的概念和性质,包括自然数、整数、有理数等,并能够进行数的四则运算。此外,学生还需要学习如何用字母表示数,以及如何进行字母式的加减乘除等运算。

2. 方程与不等式

方程与不等式是初三数学上册的第二个重点。学生需要学习如何解一元一次方程和不等式,并能够应用到实际问题中。此外,学生还需要学习方程与不等式的性质和解题技巧,如平方差公式、配方法等。

3. 几何与变量

几何与变量是初三数学上册的第三个重点。学生需要学习几何图形的性质和判定条件,如三角形的三边关系、四边形的性质等。此外,学生还需要学习如何用变量表示几何图形的性质,以及如何进行几何证明。

4. 相似与全等

相似与全等是初三数学上册的第四个重点。学生需要学习相似与全等的定义和性质,以及如何判定两个图形是否相似或全等。此外,学生还需要学习相似比和全等比的计算方法,以及如何应用相似与全等解决实际问题。

5. 统计与概率

统计与概率是初三数学上册的第五个重点。学生需要学习如何进行数据收集和整理,以及如何进行统计分析。此外,学生还需要学习概率的概念和计算方法,以及如何应用概率解决实际问题。

总的来说,最新初三数学上册的知识点涵盖了数与式、方程与不等式、几何与变量、相似与全等以及统计与概率等内容。通过系统地学习和掌握这些知识点,学生将能够在数学学习中取得更好的成绩。

最新初三数学上册的知识点总结 篇三

最新初三数学上册的知识点总结

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不如我们来制定一份总结吧。我们该怎么去写总结呢?以下是小编精心整理的最新初三数学上册的知识点总结,仅供参考,欢迎大家阅读。

  第一单元二次根式

  1、二次根式

  式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

  2、最简二次根式

  若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

  化二次根式为最简二次根式的方法和步骤:

  1如果被开方数是分数包括小数或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

  2如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

  3、同类二次根式

  几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  4、二次根式的性质

  5、二次根式混合运算

  二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的或先去括号。

  第二单元一元二次方程

  一、一元二次方程

  1、一元二次方程

  含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

  2、一元二次方程的一般形式

  ,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  二、一元二次方程的解法

  1、直接开平方法

  2、配方法

  配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其

  3、公式法

  4、因式分解法

  因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

  三、一元二次方程根的判别式

  根的判别式

  四、一元二次方程根与系数的关系

  第三单元旋转

  一、旋转

  1、定义

  把一个图形绕某一点O转动一个角度的图

形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

  2、性质

  1对应点到旋转中心的距离相等。

  2对应点与旋转中心所连线段的夹角等于旋转角。

  二、中心对称

  1、定义

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  1关于中心对称的两个图形是全等形。

  2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  3关于中心对称的两个图形,对应线段平行或在同一直线上且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

  考点五、坐标系中对称点的特征

  1、关于原点对称的点的特征

  两个点关于原点对称时,它们的坐标的符号相反,即点Px,y关于原点的对称点为P’-x,-y

  2、关于x轴对称的点的特征

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点Px,y关于x轴的对称点为P’x,-y

  3、关于y轴对称的点的特征

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点Px,y关于y轴的对称点为P’-x,y

  第四单元圆

  一、圆的相关概念

  1、圆的定义

  在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

  2、圆的几何表示

  以点O为圆心的圆记作“⊙O”,读作“圆O”

  二、弦、弧等与圆有关的定义

  1弦

  连接圆上任意两点的线段叫做弦。如图中的AB

  2直径

  经过圆心的弦叫做直径。如途中的CD

  直径等于半径的2倍。

  3半圆

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

  4弧、优弧、劣弧

  圆上任意两点间的部分叫做圆弧,简称弧。

  弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

  大于半圆的弧叫做优弧多用三个字母表示;小于半圆的弧叫做劣弧多用两个字母表示

  三、垂径定理及其推论

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

  推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧。

  2弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  3平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的`另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  垂径定理及其推论可概括为:

  过圆心

  垂直于弦

  直径平分弦知二推三

  平分弦所对的优弧

  平分弦所对的劣弧

  四、圆的对称性

  1、圆的轴对称性

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  2、圆的中心对称性

  圆是以圆心为对称中心的中心对称图形。

  五、弧、弦、弦心距、圆心角之间的关系定理

  1、圆心角

  顶点在圆心的角叫做圆心角。

  2、弦心距

  从圆心到弦的距离叫做弦心距。

  3、弧、弦、弦心距、圆心角之间的关系定理

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

  推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

  六、圆周角定理及其推论

  1、圆周角

  顶点在圆上,并且两边都和圆相交的角叫做圆周角。

  2、圆周角定理

  一条弧所对的圆周角等于它所对的圆心角的一半。

  推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径。

  推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  七、点和圆的位置关系

  设⊙O的半径是r,点P到圆心O的距离为d,则有:

  d

  d=r点P在⊙O上;

  d>r点P在⊙O外。

  八、过三点的圆

  1、过三点的圆

  不在同一直线上的三个点确定一个圆。

  2、三角形的外接圆

  经过三角形的三个顶点的圆叫做三角形的外接圆。

  3、三角形的外心

  三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

  4、圆内接四边形性质四点共圆的判定条件

  圆内接四边形对角互补。

  九、反证法

  先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

  十、直线与圆的位置关系

  直线和圆有三种位置关系,具体如下:

  1相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

  2相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

  3相离:直线和圆没有公共点时,叫做直线和圆相离。

  如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

  直线l与⊙O相交d

  直线l与⊙O相切d=r;

  直线l与⊙O相离d>r;

十一、切线的判定和性质

  1、切线的判定定理

  经过半径的外端并且垂直于这条半径的直线是圆的切线。

  2、切线的性质定理

  圆的切线垂直于经过切点的半径。

  十二、切线长定理

  1、切线长

  在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

  2、切线长定理

  从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

 十三、三角形的内切圆

  1、三角形的内切圆

  与三角形的各边都相切的圆叫做三角形的内切圆。

  2、三角形的内心

  三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

十四、圆和圆的位置关系

  1、圆和圆的位置关系

  如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

  如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

  如果两个圆有两个公共点,那么就说这两个圆相交。

  2、圆心距

  两圆圆心的距离叫做两圆的圆心距。

  3、圆和圆位置关系的性质与判定

  设两圆的半径分别为R和r,圆心距为d,那么

  两圆外离d>R+r

  两圆外切d=R+r

  两圆相交R-r

  两圆内切d=R-rR>r

  两圆内含dr

  4、两圆相切、相交的重要性质

  如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

十五、正多边形和圆

  1、正多边形的定义

  各边相等,各角也相等的多边形叫做正多边形。

  2、正多边形和圆的关系

  只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

  十六、与正多边形有关的概念

  1、正多边形的中心

  正多边形的外接圆的圆心叫做这个正多边形的中心。

  2、正多边形的半径

  正多边形的外接圆的半径叫做这个正多边形的半径。

  3、正多边形的边心距

  正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

  4、中心角

  正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

十七、正多边形的对称性

  1、正多边形的轴对称性

  正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

  2、正多边形的中心对称性

  边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

  3、正多边形的画法

  先用量角器或尺规等分圆,再做正多边形。

十八、弧长和扇形面积

  1、弧长公式

  n°的圆心角所对的弧长l的计算公式为

  2、扇形面积公式

  其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。

  3、圆锥的侧面积

  其中l是圆锥的母线长,r是圆锥的地面半径。

  补充:此处为大纲要求外的知识,但对开发学生智力,改善学生数学思维模式有很大帮助

  1、相交弦定理

  2、弦切角定理

  弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。

  弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。

  即:∠BAC=∠ADC

相关文章

财务年终总结分享(最新3篇)

财务工作年终总结范文【1】财务部紧紧围绕集团公司的发展方向,在为全公司提供服务的同时,认真组织会计核算,规范各项财务基础工作。站在财务管理和战略管理的角度,以成本为中心、资金为纽带,不断提高财务服务质...
工作总结2017-08-04
财务年终总结分享(最新3篇)

内审总结报告(精简6篇)

随着社会一步步向前发展,我们使用报告的情况越来越多,写报告的时候要注意内容的完整。那么一般报告是怎么写的呢?以下是小编为大家整理的内审总结报告(通用7篇),仅供参考,欢迎大家阅读。  内审总结报告 篇...
工作总结2012-01-05
内审总结报告(精简6篇)

酒店出纳一周工作总结(优选3篇)

出纳部积极有效地为酒店的生产经营提供了有力的数据保证。促进了生产经营的顺利完成,为经营管理提供了依据。 篇一:酒店出纳核算工作总结 一、 工作态度 我努力做好自己的本职工作,能够严以律己,保持对工作负...
工作总结2017-06-04
酒店出纳一周工作总结(优选3篇)

小学第一学期安全的工作总结【优质3篇】

总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以有效锻炼我们的语言组织能力,不如静下心来好好写写总结吧。你想知道总结怎么写吗?下面是小编收集整理的小学第一学期安...
工作总结2017-06-02
小学第一学期安全的工作总结【优质3篇】

中职年度工作总结(通用6篇)

总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以给我们下一阶段的学习和工作生活做指导,不如立即行动起来写一份总结吧。那么我们该怎么去写总结呢?以下是...
工作总结2013-02-01
中职年度工作总结(通用6篇)

幼儿园年度工作总结范文(精选3篇)

幼儿园年度工作总结范文 【#工作总结# 导语】日子在弹指一挥间就毫无声息的流逝,就在此时需要回头总结之际才猛然间意识到日子的匆匆,又到了该做总结的时候。本篇文章是?为您整理的《幼儿园年度工作总结范文》...
工作总结2012-01-03
幼儿园年度工作总结范文(精选3篇)