初二数学教案【精选6篇】

初二数学教案 篇一

标题:初二数学教案-解一元一次方程

教学目标:

1.了解一元一次方程的概念和性质。

2.学会解一元一次方程的基本方法。

3.能够应用解一元一次方程解决实际问题。

教学重点:

1.一元一次方程的概念和性质。

2.解一元一次方程的基本方法。

教学难点:

能够应用解一元一次方程解决实际问题。

教学准备:

1.教师准备好黑板、粉笔、教具和习题等。

2.学生准备好笔记本、铅笔和作业本等。

教学过程:

Step 1 引入新知

教师通过举例子引入一元一次方程的概念和性质,并与学生一起讨论一元一次方程的特点。

Step 2 解一元一次方程的基本方法

教师讲解解一元一次方程的基本方法,包括合并同类项、移项、消元和代入等步骤,并通过示例演示解题过程。

Step 3 练习

教师布置一些练习题,让学生独立完成,并及时进行讲解和指导。

Step 4 应用

教师设计一些与实际问题相关的一元一次方程,并引导学生应用解一元一次方程解决这些问题。

Step 5 总结

教师与学生一起总结一元一次方程的解题方法和应用,并提醒学生掌握好这些方法,以便在以后的学习和生活中能够灵活运用。

初二数学教案 篇二

标题:初二数学教案-解直角三角形

教学目标:

1.了解直角三角形的定义和性质。

2.学会解直角三角形的基本方法。

3.能够应用解直角三角形解决实际问题。

教学重点:

1.直角三角形的定义和性质。

2.解直角三角形的基本方法。

教学难点:

能够应用解直角三角形解决实际问题。

教学准备:

1.教师准备好黑板、粉笔、教具和习题等。

2.学生准备好笔记本、铅笔和作业本等。

教学过程:

Step 1 引入新知

教师通过展示直角三角形的示意图引入直角三角形的定义和性质,并与学生一起讨论直角三角形的特点。

Step 2 解直角三角形的基本方法

教师讲解解直角三角形的基本方法,包括勾股定理、正弦定理和余弦定理等,并通过示例演示解题过程。

Step 3 练习

教师布置一些练习题,让学生独立完成,并及时进行讲解和指导。

Step 4 应用

教师设计一些与实际问题相关的直角三角形,并引导学生应用解直角三角形解决这些问题。

Step 5 总结

教师与学生一起总结直角三角形的解题方法和应用,并提醒学生掌握好这些方法,以便在以后的学习和生活中能够灵活运用。

初二数学教案 篇三

  初二上册数学知识点总结:等腰三角形

  一、等腰三角形的性质:

  1、等腰三角形两腰相等.

  2、等腰三角形两底角相等(等边对等角)。

  3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.

  4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。

  5、等边三角形的性质:

  ①等边三角形三边都相等.

  ②等边三角形三个内角都相等,都等于60°

  ③等边三角形每条边上都存在三线合一.

  ④等边三角形是轴对称图形,对称轴是三线合一(3条).

  6.基本判定:

  ⑴等腰三角形的判定:

  ①有两条边相等的三角形是等腰三角形.

  ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

  ⑵等边三角形的判定:

  ①三条边都相等的三角形是等边三角形.

  ②三个角都相等的三角形是等边三角形.

  ③有一个角是60°的等腰三角形是等边三角形.

初二数学教案 篇四

   教学目标:

  1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

  2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

  重点难点:

  重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

  难点:勾股定理的发现

  教学过程

  一、创设问题的情境,激发学生的学习热情,导入课题

  出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示投影2(书中的P2图1—2)并回答:

  1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即A的面积为______个单位。

  正方形C中有_______个小方格,即A的面积为______个单位。

  2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

  3、图1—2中,A,B,C之间的面积之间有什么关系?

  学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?

  二、做一做

  出示投影3(书中P3图1—4)提问:

  1、图1—3中,A,B,C之间有什么关系?

  2、图1—4中,A,B,C之间有什么关系?

  3、从图1—1,1—2,1—3,1|—4中你发现什么?

  学生讨论、交流形成共识后,教师总结:

  以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

  三、议一议

  1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

  2、你能发现直角三角形三边长度之间的关系吗?

  在同学的交流基础上,老师板书:

  直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

  也就是说:如果直角三角形的两直角边为a,b,斜边为c

  那么

  我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

  四、想一想

  这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

  五、巩固练习

  1、错例辨析:

  △ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足=25

  即:c=5

  辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

  △ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

  (2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

  综上所述这个题目条件不足,第三边无法求得。

  2、练习P7§1.11

  六、作业

  课本P7§1.12、3、4

初二数学教案 篇五

  教学目标

  1、初步掌握频率分布直方图的概念,能绘制有关连续型统计量的直方图;

  2、让学生进一步经历数据的整理和表示的过程,掌握绘制频率分布直方图的方法;

  教学重点

  掌握频率分布直方图概念及其应用;

  教学难点

  绘制连续统计量的直方图

  教学过程

  Ⅰ.提出问题,创设情境,引入新课:

  问题:我们班准备从63名同学中挑选出身高相差不多的40名同学参加比赛,那么这个想法可以实现吗?应该选择身高在哪个范围的学生参加?

  63名学生的身高数据如下:

  158158160168159159151158159

  168158154158154169158158158

  159167170153160160159159160

  149163163162172161153156162

  162163157162162161157157164

  155156165166156154166164165

  156157153165159157155164156

  解:(确定组距)最大值为172,最小值为149,他们的差为23

  (身高x的变化范围在23厘米,)

  (分组划记)频数分布表:

  身高(x)划记频数(学生人数)

  149≤x<1522

  152≤x<1556

  155≤x<15812

  158≤x<16119

  161≤<16410

  164≤x<1678

  167≤x<1704

  170≤x<1732

  从表中看,身高在155≤x

含164cm)之间的学生中选队员

  (绘制频数分布直方图如课本P72图12.2-3)

  探究:上面对数据分组时,组距取3,把数据分成8个组,如果组距取2或4,那么数据应分成几个组,这样做能否选出身高比较整齐的队员?

  分析:如果组距取2,那么分成12组;如果组距取4,那么分成6组。都可以选出身高比较整齐的队员。

  归纳:组距和组数的确定没有固定的标准,要凭借经验和研究的具体问题来决定,通常数据越多,分成的组数也越多,当数据在100个以内时,根据数据的多少通常分为5~12个组。

  我们还可以用频数折线图来描述频数分布的情况。频数折线图可以在频数分布直方图的基础上画出来。

  首先取直方图中每一个长方形上边的中草药点,然后在横轴上取两个频数为0的点,在上方图的左边取(147、5,0),在直方图的右边取点(174、5,0),将这些点用线段依次连接起来,就得到频数折线图。

  频数折线图也可以不通过直方图直接画出。

  根据表12.2-2,求了各个小组两个端点的平均数,而这些平均数称为组中值,用横轴表示身高(组中值),用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的频数为纵坐标描点,另外再在横轴上取两个点,依次连接这些点,就得到频数分布折线图如课本P73图。

  II课堂小结:

  (1)怎样制作频数分布直方图和频数分布折线图

  (2)组距和组数没有确定标准,当数据在1000个以内时,通常分成5~12组

  (3)如果取个长方形上边的中点,可以得到频数折线图

  (4)求各小组两个断点的平均数,这些平均数叫组中值。

初二数学教案 篇六

  教学目标

  1.知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等。

  2.会运用梯形的有关概念和性质进行有关问题的论证和计算。

  3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想。

  教学模式问题解决教学

  教学过程

  想一想:

  什么样的四边形是平行四边形?平行四边形有哪些性质?学生回答后,教师板书以下关系图中的有关部分:

  画一画:

  画一个梯形,并指出梯形的上、下底,画出梯形的高。

  问题教学

  问题1:根据刚才的画图,请给梯形下一个定义,并说说梯形与平行四边形的区别和联系。(说明与建议:(l)让学生自己给梯形下定义,有助于训练学生观察、概括和语言表述的能力。如果学生定义时,遗漏了"另一组对边不平行"教师可举及例(2)对梯形的定义,还可以让学生讨论以下问题:一组对边平行且这组对边不相等的四边形是梯形吗?为什么?教师可用反证法的思想说理。然后,板书完成"想一想"中的关系图,并结合图表指出:梯形和平行四边形的区别和联系。(3)梯形的高是指夹在两底间的公垂线段,在计算面积时高即为上下两底(平行线)间的距离,也就是夹在两底间的公垂线段的长度。画高时可以从上底任一点向下底作垂线段,一般常从上底的两端向下底作垂线段可方便地构造直角三角形,便于计算。)

  问题2:如图4.9-1,在(1)中:四边形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四边形ABCD的AD∥BC,ABCD,且AB=CD。请你给这两种四边形命名。(说明与建议:学生说出图(l)的四边形是直角梯形,图(2)是等腰梯形,通常不会有困难;教师应进一步引导学生讨论,在图(1)中CD⊥BC,那么CD⊥AD吗?(CD⊥AD,且指出:CD就是直角梯形的高)当CD⊥BC时,另一腰AB可以垂直BC吗?为什么?(若AB⊥BC,那么四边形ABCD就成为矩形了,不再是梯形。)在图(2)中,上底AD与下底BC能相等吗?(不能,否则四边形ABCD成为平行四边形,不再是梯形。)

  练一练:课本例1后练习第l、2题。

  问题3:观察图4.9-2中的等腰梯形ABCD,猜想它还可能具有哪些特殊性质。并能证明你的猜想吗?

  说明与建议:(l)教师要用微笑、点头、赞叹、激励的表情和话语来鼓励学生大胆猜想。(2)学生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是轴对称图形等等。教师要引导学生关注等腰梯形特有的性质---等腰梯形的底角相等。(3)如何证明这个猜想,可让学生自己思考、探索、交流,教师给以引导,鼓励证明多样化,如课本第174页的`证法。教师可提醒学生证明过程中用到了"夹在平行线间的平行线段相等"这一性质。并指出:这种证法的实质是把一腰平移,从而构造出等腰三角形;对于如图4.9-2(作AE⊥BC,DF⊥BC)所示的证法,教师可指出:通过作梯形的两条高,可以构造出两个全等的直三角形等。

  问题4:如何证明等腰梯形是轴对称图形呢?(说明与建议:可让学生用折纸的方法,确认等腰梯形是轴对称图形;教学中,还可引导学生借助等腰三角形的轴对称性加以证明,如图4.9-3,延长等腰梯形两腰BA、CD相交于点E,易证△AED和△EBC都是等腰三角形。EF⊥BC,则EF⊥AD,EF所在的直线是两个等腰三角形EAD、EBC的对称轴。由轴对称图形可知,也是等腰梯形ABCD的对称轴。因此,等腰梯形是轴对称图形,有一条对称轴,是过两底中点的直线。)

  例题解析(课本例1)说明:本例的结论,为学生在讨论"问题3"时已提及,则可由学生自已完成证明,并概括成为一个文字命题。如学生讨论问题3时未提及,则可由教师引导学生猜想,然后再完成证明。

  课堂练习1.课本例1后练习第3题。2.如图4.9-4,已知等腰梯形ABCD的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积。(方法一,过点C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面积公式求解;方法二,过点C和D分别作高CF、DG,可知,从而在Rt△AGD中求出高DG=4cm。)

相关文章

大班主题活动《神秘洞》教案【精选3篇】

作为一名为他人授业解惑的教育工作者,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?以下是小编精心整理的大班主题活动《神秘洞》教案,欢迎大家借鉴与参考,希望对大家有...
教案大全2013-01-06
大班主题活动《神秘洞》教案【精选3篇】

小学一年级下册音乐教案三篇(优质3篇)

小学一年级下册音乐教案三篇 【#一年级# 导语】唱歌教学是小学音乐教学的重要内容,它不仅是对学生音乐感受力和唱歌基本能力的培养,而且对学生浸润美的熏陶、提高艺术修养起着非常重要的作用。以下是?整理的《...
教案大全2011-04-02
小学一年级下册音乐教案三篇(优质3篇)

《桂花雨》优秀教学教案设计【精选3篇】

教学目标: 1.读文章,发挥想象力,描述文中的情景。 2.理解这里的桂花再香,也比不上家乡院子里的桂花。一句话的意思。 3.体会作者表达的浓浓思乡之情。 教学中、难点: 理解深层文意,体会文章中优美语...
教案大全2012-09-06
《桂花雨》优秀教学教案设计【精选3篇】

这片土地是神圣的教案【推荐6篇】

作为一名教职工,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?以下是小编为大家收集的这片土地是神圣的教案,希望对大家有所帮助。这片土地是神圣的教案1教学目标...
教案大全2014-09-06
这片土地是神圣的教案【推荐6篇】

小学安全第一课教案【通用6篇】

作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。怎样写教案才更能起到其作用呢?以下是小编收集整理的2022年小学安全第一课教案,仅供参考,欢迎大家...
教案大全2012-04-06
小学安全第一课教案【通用6篇】

《哪座房子最漂亮》优秀教案设计(推荐6篇)

作为一名教学工作者,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。那么写教案需要注意哪些问题呢?下面是小编整理的《哪座房子最漂亮》优秀教案设计,仅供参考,希望能够帮助到大家。 ...
教案大全2013-05-06
《哪座房子最漂亮》优秀教案设计(推荐6篇)